
Riccardo Terrell

Functional

Reactive

Programming
for Natural User Interface

“I have no special talents. I am only passionately curious.”

- Albert Einstein

Kraków, 2016

Agenda

What is Functional Reactive Programming – FRP vs RP

FRP foundations and motivations

FRP implemented in F# with Code Samples – Original Paper

FRP implemented in F# with Code Samples – Modern Paper

Natural User Interface with Leap Motion in Action

Something about me - Riccardo Terrell

 Originally from Italy, currently - Living/working in Washington DC ~10 years

 +/- 19 years in professional programming

 C++/VB  Java  .Net C#  Scala  Haskell  C# & F#  ??

 Organizer of the DC F# User Group

 Working @

 Polyglot programming believer the mechanism to find the right tool for the job

Authoring book on Concurrency adopting the Functional Paradigm in C# & F#

Available for presale: http://tinyurl.com/zzpv9gx

@trikace rickyterrell.com tericcardo@gmail.com

http://tinyurl.com/zzpv9gx

Leap Motion Sensor

“In just one hand, you have 29 bones, 29
joints, 123 ligaments, 48 nerves, and 30
arteries. That’s sophisticated, complicated,
and amazing technology (times two). Yet it
feels effortless. The Leap Motion Controller
has come really close to figuring it all out.”

ID,

Timestamp,

Hands,

Fingers,

Tools,

Gestures

Frame

Translation,

RotationAxis,

RotationAngle,

Scalefactor

Motion factors

Paddle-ball Game with Leap Motion

Functional Reactive Programming

Functional Reactive Programming

• declarative

• functions as values

• side-effects free

• referential transparency

• immutable

• composition

Functional Reactive Programming

sample.TweetReceived
|> Event.filter(fun tweet -> tweet.lang = "en")
|> Event.choose(fun tweet -> tweet.Text)
|> Event.map(fun text ->

if Set.contains text positive then 1
elif Set.contains text negative then -1
else 0)

|> Event.scan (+)
|> Event.add(fun n -> printfn "Mood=%d" n)

Functional Reactive Programming

Conal Elliot Paul Hudak

Composable Dynamic evolving

values over time

Functional Reactive ANimation

http://conal.net/papers/icfp97/icfp97.pdf

http://conal.net/papers/icfp97/icfp97.pdf

Functional Reactive Programming adoption

 Graphical User Interfaces (GUI)

 Digital Music

 Robotics

 Graphical Animation

 Sound Synthesis

 Virtual Reality Environments

 Games

FRP becomes Main-Stream

FRP has evolved in a number of directions and into different

concrete implementations

What is Functional Reactive Programming

“FRP is about handling time-varying values like
they were regular values.”

- Haskell Wiki

Functional Reactive Programming is:
 Temporally continuous (Natural & Composable)

 Denotative (Elegant & Rigorous)

Denotational Semantics

Denotational Semantics map each part of a program to a mathematical
object (denotation), which represents the meaning of the program in
question.

Consider the definition of a factorial function

fact n = product [1..n] int fact(int n) {
int i;
int result = 1;
for (i = 2; i <= n; ++i)

result *= i;
return result;}

Denotational Semantics

Denotational Semantics map each part of a program to a mathematical
object (denotation), which represents the meaning of the program in
question.

Denotational Semantics properties

 leads to simple design

 emphasizes declarative programming style (What vs How)

 uses math to prove a property of a program

 proofs that compositionality holds for all building blocks

= Simple Design

Foundation of FRP – Time

type Time = float

(precise & simple semantics)

Continuous Time

Discrete Time

Virtual Time

Foundation of FRP - Behavior

type Time = float

type 'a Behavior = Behavior of (Time -> 'a)

(precise & simple semantics)

Foundation of FRP - Behavior

type Time = float

type 'a Behavior = Behavior of (Time -> 'a)

// The time itself
let time = Behavior (fun t -> t)

// Behavior constant over time
let conBeh = Behavior (fun _ -> "Hello FRP!")

// Behavior that increase at 2.5 the rate of time
let incrSpeedBeah = Behavior (fun t -> t * 7.5)

Behavior API – Original Implementation

let lift0 'a = Behavior 'a

let lift1 ('a -> 'b) = Behavior 'a -> Behavior 'b

let lift2 ('a -> 'b -> 'c) =
Behavior 'a -> Behavior 'b -> Behavior 'c

let time = Behavior (fun t -> t)

let time7_5 = lift1 ((*) 7.5) time

let createBehavior f:(Time -> 'a) = (lift1 f) time

Foundation of FRP - Event

type Time = float

type 'a Behavior = Behavior of (Time -> 'a)

type 'a Event = Event of [(Time * 'a option)] - no decreasing time

// When the Event passes 3 secs increase its speed
let event = Event (fun t -> if (t > 3.) then Some(t*2.5) else None)

(precise & simple semantics)

FRP - Mouse Position

Event Based view

MouseMovedEvent (position: Position)

FRP view – at any point in time represents the current mouse position

mousePosition = Behavior [Position]

inRectangleBeh(ul: Position , lr:Position) : Behavior [bool] =

let position = mousePosition()

Behavior [ul <= position && position <= lr]

Foundation of FRP - Behavior

type 'a Behavior = Behavior of (Time -> 'a)

Value

Time

Position mouse
Mouse Clicks

type 'a Event = Event of [Time -> 'a]

Temporal modeling
Composable Behavior first class values

Event modeling
Composable Event first class values

Declarative reactivity
Semantic in terms of temporal composition

Polymorphic media
Set of combinators applicable to any types of time-varying values

“So, what is FRP? You could have invented it yourself,
start with these ideas:”

http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming - Conal Elliot

http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming

Push-Pull Functional Reactive Programming

http://conal.net/papers/push-pull-frp/push-pull-frp.pdf

http://conal.net/papers/push-pull-frp/push-pull-frp.pdf

Chains of simple phases - Reactivity

type 'a Behavior =

Behavior of (Time -> 'a * ReactBeh<'a>))

and 'a ReactBeh = unit -> 'a Behavior

Chains of simple phases

type 'a Behavior = Behavior of (Time -> 'a * ReactBeh<'a>)

and 'a ReactBeh = unit -> 'a Behavior

let rec pureBeh value = Behavior(fun time ->

(value, fun () -> pureBeh value))

let rec timeBeh = Behavior(fun time ->

(time, fun () -> timeBeh))

Chains of simple phases

type 'a Event = Event of

(Time -> Option<'a> * ReactEvent<'a>)

and 'a ReactEvent = unit -> 'a Event

let rec pureEvt value = Event(fun time ->

(Some(value), fun () -> pureEvt value))

FRP Behavior can compose

fmap :: ('a -> 'a) -> Behavior 'a -> Behavior 'a

pure :: ‘a -> Behavior ’a

(<*>) :: Behavior ('a -> 'a) -> Behavior 'a -> Behavior 'a

 Less learning and more leverage

 Specifications and laws for “free”

FRP Behavior can compose

fmap :: ('a -> 'a) -> Behavior 'a -> Behavior 'a

pure :: 'a -> Behavior 'a

(<*>) :: Behavior ('a -> 'a) -> Behavior 'a -> Behavior 'a

type Position = Position of (float*float)

let inRectangleBeh (ul:Position, lr:Position) : bool Behavior =
pureBeh (fun (position:Position) ->
if ul <= position && lr <= position then true
else false) <*> mousePositionBeh // Position Behavior

FRP Event API

never :: 'a Event

(.|.) :: 'a Event -> 'a Event -> 'a Event

whenEvent :: bool Behavior -> unit Event

whileEvent :: bool Behavior -> unit Event

(.&.) :: ‘a Event -> ’b Event -> (’a * ‘b) Event

(=>>) :: ‘a Event -> (’a -> ‘b) -> ’b Event

FRP – Combinators

type Event ::
// (‘a -> ‘b) -> Event ‘a -> Event ‘b
let map(f : 'a -> 'b) : Event<'b> = // …
// (‘a -> bool) -> Event ‘a
let filter(f : 'a -> bool) : Event<'a> = // …
// (Event ‘a * Event ‘a) -> Event ‘a
let merge(ea : Event<'a>, eb : Event<'a>) : Event<'a> = // …
let (.|.) = merge
// ‘a -> Event<‘a -> ‘a> -> Behavior ‘a
let accum (value:’a) (evt:Event<'a->’a>) : Behavior<'a> = // …

FRP – Behavior switch

type Behavior
// Behavior ‘a -> Event<Behavior<‘b>> -> Behvavior<‘b>
let switchBeh (beh:Behavior<‘a>) (evt:Event<Behavior<'b>>)
: Behavior<'b> =

let s1 = MkStream [([0],’a’), ([1], ‘b’), ([2], ‘c’)]
let s2 = MkStream [([0], ‘W’), ([1], ‘X’), ([2], ‘Y’)]
// hold :: ‘a -> ‘a Event -> ‘a Behavior
let c = hold s1 (MkStream[([1], s2)]) [0]
let s3 = Switch c

Bank Account

type BankAccount() =
let deposit = Event<int>.newDefault()
let withdraw = Event<int>.newDefault()
let bh : Event<int> = merge deposit withdraw
// Reevaluated for each update
let bhAcc : Behavior<int> = bh.accum(0, (+))

member x.Balance with get() = bhAcc.Sample()
member x.Deposit(amount) = deposit.send(amount)
member x.Withdraw(amount) = withdraw.send(-amount)

Paddle-ball Game with Leap Motion

Summary

 True FRP is about dynamic evolving values over time

 Precise, simple denotation. (Elegant & rigorous)

 Continuous time. (Natural & composable)

 Denotational Semantic leads to simpler designs and reusable abstraction

 FRP provide a declarative, composable and elegant programming style for

animation, graphic and music (IMO - FRP will influence future NUI studies)

 Build your own FRP!

How to reach me

github.com/DCFsharp

meetup.com/DC-fsharp/

@DCFsharp

rterrell@microsoft.com

Q & A ?

The tools we use have a profound (and devious!) influence on our thinking habits,

and, therefore, on our thinking abilities.

-- Edsger Dijkstra

How to reach me

github.com/rikace/Presentations/FRP-NUI

@TRikace tericcardo@gmail.com

mailto:tericcardo@gmail.com

