Functional
Reactive

Programming
for Natural User Interface

“I-have no special talents. | am only passionately curious.”
- Albert Einstein

Riccardo Terrell

What is Functional Reactive Programming — FRP vs RP
FRP foundations and motivations

FRP implemented in F# with Code Samples —

FRP implemented in F# with Code Samples —

Natural User Interface with Leap Motion in Action

Something about me - Riccardo Terrell

0 Originally from Italy, currently - Living/working in Washington DC ~10 years

0 +/- 19 years in professional programming
m C++/VB = Java = .Net C# = Scala = Haskell > C# & F# > 22

o Organizer of the DC F# User Group
0 Working @ [l statmuse

0 Polyglot programming believer the mechanism to find the right tool for the job

I o

Authoring book on Concurrency adopting the Functional Paradigm in CH# & F#

VISEEIEIEY | Available for presale: hitp://tinyurl.com/zzpv9gx
Systems in

NET

@trikace rickyterrell.com tericcardo@gmail.com

http://tinyurl.com/zzpv9gx

Leap Motion Sensor

+Y

“In just one hand, you have 29 bones, 29
joints, 123 ligaments, 48 nerves, and 30
arteries. That’s sophisticated, complicated,
and amazing technology (times two). Yet it
feels effortless. The Leap Motion Controller
has come really close to figuring it all out.”

5 fingers, average finger-tip position: (8.05207,
: 2222, timestamp: 10401134, hands: 1, fingers: 5,

5 fingers, average filiger tip position: (8.29357,
: 2226, timestamp: 10419846, hands: 1, fingers: 5,

5 fingers, average finger tip position: (8.44423,
: 2230, timestamp: 10438557, hands: 1, fingers: 5,

5 fingers, average finger- tip position: (8.4602,

: 2234, timestamp: 10457268, hands: 1, fingers: 5,

wolal

5 fingers, average finger tip position: (8.36989,
: 2238, timestamp: 10475979, hands: 1, fingers: 5,

G

5 fingers, average fihger.'tip position: (8.19734,
: 2242, timestamp: 10494690, hands: 1, fingers: 5,

5 fingers, average finger tip position: (7.98751,
: 2246, timestamp: 10513402, hands: 1, fingers: 5,

5 fingers, average finger:.tip position: (7.73525,
: 2250, timestamp: 10532113, hands: 1, fingers: 5,

Frame —

|

‘ =]
ID, Maotion factors , f F— !
Timestamp, | 1l i
Hands, Translation, ’11 (44447”ﬂ
Fingers || RotationAxis, 1l ;
Tools) RotationAngle, { i h|

' Scalefactor :

Gestures |

69.3328, -17.8252)

tools: O, gestures:

69.3763, -17.896)

tools: 0, gestures:

.

69.4465, -17.9379)

tools: 0, gestures:

&

69.4943, -17.9635)

tools: O, gestures:

69.5165, -17.9892)

tools: 0, gestures:

69.4871, -18.0453)

tools: 0, gestures:

69.4126, -18.1288)

tools: O, gestures:

69.3156, -18.2251)

toolsk 0, gestures:

Paddle-ball Game with Leap Motion <>

eeeeeeee - - IEl

The Haskell School of Expression
LEARNING FUNCTIONAL PROGRAMMING

Functional Reactive Programming

Functional Programming

Reactive Programming

. TweetReceived

Event.filter(fun tweet -> tweet.lang = "en")
Event.choose(fun tweet -> tweet.Text)
Event.map(fun text ->

if Set.contains text positive then 1
elif Set.contains text negative then -1
else 0)

scan (+)

add(fun n -> printfn "Mood=%d" n)

Functional Reactive Programming

Functional Reactive ANimation

Functional Reactive Animation

Conal Elliott
Microsoft Research
Graphics Group
conal@microsoft.com

Abstract

Fran (Functional Reactive Animation) is a collection of data
types and functions for composing richly interactive, multi-
media animations. The key ideas in Fran are its notions of
behaviors and events. Behaviors are time-varying, reactive
values, while events are sets of arbitrarily complex condi-
tions, carrying possibly rich information. Most traditional
values can be treated as behaviors, and when images are
thus treated, they become animations. Although these no-

Paul Hudak
Yale University
Dept. of Computer Science
paul.hudak@yale.edu

e capturing and handling sequences of motion input events,

even though motion input is conceptually continuous;

e time slicing to update each time-varying animation pa-
rameter, even though these parameters conceptually
vary in parallel; and

By allowing programmers to express the “what” of an
interactive animation, one can hope to then automate the
“how” of its presentation. With this point of view, it should

http:/ /conal.net

apers/icfp97 /icfp?7.odf

http://conal.net/papers/icfp97/icfp97.pdf

Functional Reactive Programming qdop’rion<>

o Graphical User Interfaces (GUI)
o Digital Music

o Robotics

o Graphical Animation

o Sound Synthesis

o Virtual Reality Environments

0 Games

FRP becomes Main-Stream

FRP has evolved in a number of directions and into different

concrete implementations

(} FooReact HNHIARES

NGULARIJS

by Google

What is Functional Reactive Progrqmming<>

“FRP is about handling time-varying values like
they were regular values.”

- Haskell Wik

Functional Reactive Programming Is:
Temporally continuous (Natural & Composable)
Denotative (Elegant & Rigorous)

Denotational Semantics

Denotational Semantics map each part of a program to a mathematical
object (denotation), which represents the meaning of the program in
question.

Consider the definition of a factorial function

fact n = product [1..n] int fact(int n) {

int 1i;

int result = 1;

for (i = 2; i <= n; ++1)
result *= i;

return result;}

Denotational Semantics = Simple Design €

Denotational Semantics map each part of a program to a mathematical

object (denotation), which represents the meaning of the program in
question.

Denotational Semantics properties
leads to simple design

emphasizes declarative programming style (What vs How)
uses math to prove a property of a program

proofs that compositionality holds for all building blocks

Foundation of FRP — Time(e <>
precise simpie semantics

type Time = float

L v

Foundation of FRP - Behavior <>

(precise & simple semanti

—— type Time = float

—— type 'a Behavior = Behavior of (Time -> 'a)

L\

Foundation of FRP - Behavior

—— type Time = float

L

—— type 'a Behavior = Behavior of (Time -> 'a)

L\

// The time itself
let time = Behavior (fun t -> t)

// Behavior constant over time
let conBeh = Behavior (fun _ -> "Hello FRP!")

// Behavior that increase at 2.5 the rate of time
let incrSpeedBeah = Behavior (fun t -> t * 7.5)

Behavior APl — Original Implementation ¥

let 1ifte 'a = Behavior 'a
let 1iftl ('a -> 'b) = Behavior 'a -> Behavior 'b

let 1lift2 ('a -> 'b -> 'c) =

| Behavior 'a -> Behavior 'b -> Behavior 'c |,
h -

let time = Behavior (fun t -> t)
let time7 5 = 1iftl ((*) 7.5) time

- let createBehavior f:(Time -> 'a) = (1liftl f) time f
. /

Foundation of FRP - Event Q

(precise & simple semantics)

type Time = float
t)

// When the Event passes 3 secs increase its speed
let event = Event (fun t -> if (t > 3.) then Some(t*2.5) else None)

FRP - Mouse Position

— 1]
Event Based view (30,30) (50,40) (70,50)
MouseMovedEvent (position: Position) N N

FRP view — at any point in time represents the current mouse position

mousePosition = Behavior [Position]

inRectangleBeh (ul: Position , lr:Position) : Behavior [bool] =
let position = mousePosition|()

Behavior [ul <= position && position <= lr]

Foundation of FRP - Behavior

s

type 'a Behavior = Behavior of (Time -> 'a)

Ny -

type 'a Event = Event of [Time -> 'a]

4
Value

Position mouse

, Time

“So, what is FRP? You could have invented it yourself,
start with these ideas:”

://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming - Conal Elliot

Temporal modeling

Composable Behavior first class values

Event modeling

Composable Event first class values

Declarative reactivity

Semantic in terms of temporal composition

Polymorphic media

Set of combinators applicable to any types of time-varying values

http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming

Push-Pull Functional Reactive Programming Q

Push-Pull Functional Reactive Programming

Conal Elliott
LambdaPix
conal@conal.net

Abstract

Functional reactive programming (FRP) has simple and powerful
semantics, but has resisted efficient implementation. In particular,
most past implementations have vsed demand-driven sampling,
which accommodates FRF's continuous time semantics and fits
well with the nature of functional programming. Consequently,
values are wastefully recomputed even when inputs don’t change,
and reaction latency can be as high as the sampling period.

more composable than their finite counterpants, because they can be
scaled arbitrarily in time or space. before being clipped to a finite
timefspace window.

While FRP has simple, pure, and composable semantics, its ef-
ficient implementation has not been so simple. In particular, past
implementations have used demand-driven (pull) sampling of reac-
tive behaviors, in contrast to the data-driven (push) evaluation typ-
ically used for reactive systems, such as GUIs. There are at least

fiiims efeman faacnne fose choonciae anll aas seoech foe FTRD-

http://conal.net/papers/push-pull-frp /push-pull-frp.pdf

http://conal.net/papers/push-pull-frp/push-pull-frp.pdf

Chains of simple phases - Reactivity <>

Behavior of (Time -> 'a * ReactBeh<'a>))

L

—— type 'a Behavior = —W

and 'a ReactBeh = unit -> 'a Behavior

i W

Chains of simple phases

type 'a Behavior = Behavior of (Time -> 'a * ReactBeh<'a>)

L and 'a ReactBeh = unit -> 'a Behavior
N _/

— let rec pureBeh value = Behavior(fun time -> ‘

(value, fun () -> pureBeh value))

L -

&)
let rec timeBeh = Behavior(fun time ->

(time, fun () -> timeBeh))

Chains of simple phases

]
— type 'a Event = Event of
(Time -> Option<'a> * ReactEvent<'a>)]
N and 'a ReactEvent = unit -> 'a Event |
- _/
—— let rec pureEvt value = Event(fun time ->
(Some(value), fun () -> pureEvt value)) _‘
\ /

14

FRP Behavior can compose
-]

> Less learning and more leverage

» Specifications and laws for “free”

FRP Behavior can compose

{— fmap :: ('a -> 'a) -> Behavior 'a -> Behavior 'a —W

pure :: 'a -> Behavior 'a
{_\ (<*>) :: Behavior ('a ->» 'a) -> Behavior 'a -> Behavior 'a J_W

type Position = Position of (float*float)

let inRectangleBeh (ul:Position, lr:Position) : bool Behavior =
pureBeh (fun (position:Position) -»>
if ul <= position & & 1lr <= position then true
else false) mousePositionBeh // Position Behavior

FRP Event API

FRP — Combinators

type Event ::

// (‘a -> ‘b) -> Event ‘a -> Event ‘b

let map(f : 'a -> 'b) : Event<'b> = // ..

// (‘a -> bool) -> Event ‘a

let filter(f : 'a -> bool) : Event<'a> = // ..

// (Event ‘a * Event ‘a) -> Event ‘a

let merge(ea : Event<'a>, eb : Event<'a>») : Event<'a> = // ..
let (.|.) = merge

// fa -> Event<‘a -> ‘a> -> Behavior ‘a

let accum (value:’a) (evt:Event<'a->’a>») : Behavior<'a>» = // ..

FRP — Behavior switch

type Behavior

// Behavior ‘a -> Event<Behavior<‘b>> -> Behvavior<‘b>

let switchBeh (beh:Behavior<€a>) (evt:Event<Behavior<'b>>)
: Behavior<'b> =

let s1 = MkStream [([©],’a’), ([1], ‘b’), ([2], ‘c’)]

let s2 = MkStream [([©], ‘W’), ([1], “X’), ([2], ‘Y’)]

// hold :: fa -> ‘a Event -> ‘a Behavior ¢ o 11 13 i3

let ¢ = hold s1 (MkStream[([1], s2)]) [@] SN T T

let s3 = Switch c Sl—e e e il
s2 éwvé'x'ilﬂ:'z': >
c — si s2 -
SF bty g B

Bank Account

type BankAccount() =
let deposit = Event<int>.newDefault()
let withdraw = Event<int>.newDefault()
let bh : Event<int> = merge deposit withdraw
// Reevaluated for each update
let bhAcc : Behavior<int> = bh.accum(@, (+))

member x.Balance with get() = bhAcc.Sample()
member x.Deposit(amount) = deposit.send(amount)
member x.Withdraw(amount) = withdraw.send(-amount)

Paddle-ball Game with Leap Motion <>

eeeeeeee - - IEl

The Haskell School of Expression
LEARNING FUNCTIONAL PROGRAMMING

Summary

o True FRP is about dynamic evolving values over time

o Precise, simple denotation. (Elegant & rigorous)
o Continuous time. (Natural & composable)
o Denotational Semantic leads to simpler designs and reusable abstraction

o FRP provide a declarative, composable and elegant programming style for

animation, graphic and music (IMO - FRP will influence future NUI studies)

o Build your own FRP!

The tools we use have a profound (and devious!) influence on our thinking habits,
and, therefore, on our thinking abilities.

-- Edsger Dijkstra

How to reach me

©

*

*

) o

github.com /rikace /Presentations /FRP-NUI

DCF# g

tericcardo@gmail.com

mailto:tericcardo@gmail.com

