Robert Virding

Principle Language Expert
at Erlang Solutions Ltd.

LFE - a lisp flavour on the
Erlang VM

LFE - Lisp Flavoured Erlang

e Sune
e Bert

‘ LFE - Lisp Flavoured Erlang

What LFE isn’t

e Itisn’t an implementation of Scheme
e Itisn't an implementation of Common Lisp
e Itisn’t an implementation of Clojure

e Properties of the Erlang VM make these
languages difficult to implement efficiently

LFE - Lisp Flavoured Erlang

=i

e LFE is a proper lisp based on the features and
limitations of the Erlang VM

What LFE is

e LFE coexists seamlessly with vanilla Erlang and
OTP

e Runs on the standard Erlang VM

%

LFE - Lisp Flavoured Erlang 4

Overview

e Why Lisp?

e The goal

e What is the BEAM?

e Properties of the BEAM/LFE
e Implementation

LFE - Lisp Flavoured Erlang

=

e Do we really want to code in something so old?

Why Lisp?

DEFINE ((

(MEMBER (LAMBDA (A X) (COND ((NULL X) F)
((EQ A (CAR X)) T) (T (MEMBER A (CDR X))))))

(UNION (LAMBDA (X Y) (COND ((NULL X) Y) (MEMBER
(CAR X) Y) (UNION (CDR X) Y)) (T (CONS (CAR X)
(UNION (CDR X) Y))))

(INTERSECTION (LAMBDA (X Y) (COND ((NULL X) NIL)
((MEMBER (CAR X) Y) (CONS (CAR X) (INTERSECTION
(CDR X) Y))) (T (INTERSECTION (CDR X) Y)))))

)

INTERSECTION ((Al A2 A3) (Al A3 A5))

UNION ((X Y Z) (UV W X))

&

LFE - Lisp Flavoured Erlang 6

=

e Do we really want to code in something so old?

Why Lisp?

e Fortunately we don’t have to

1 (defun union

2 (("() set) set)

3 (((cons head tail) set)

4 (cond ((lists:member head set) (union tail set))
5 (*true (cons head (union tail set))))))

b

7 (defun intersection

8 (')) "())

9 (((cons head tail) set)

10 (cond ((lists:member head set) (cons head (intersection tail set)))
11 ("true (intersection tail set)))))

LFE - Lisp Flavoured Erlang 7

Why Lisp?

1 5.6 09 e Numbers
bert more-of do if size > e Symbols
(1 2 3) e Lists
(a b c)
(ab (x 1Y) 3)
(> size 4) e Lists, hmm ...
(if (> size 4) e Lists, but this looks like ...
(bump-it)
(drop-it))
(defun test (size) e Code is lists
(if (> size 4)
(bump-it)

(drop-it)))

%

LFE - Lisp Flavoured Erlang 8

=i

e A lot has changed since 1958... even for Lisp: it
now has even more to offer

Why Lisp?

e It's a programmable programming language

e As such, it's an excellent language for exploratory
programming

e Many are drawn to the beauty of the near
syntaxlessness of the language

e Due to it's venerable age, there is an enormous
corpus of code to draw from

LFE - Lisp Flavoured Erlang 9

The LFE goal
A “proper” lisp
Efficient implementation on the BEAM

Seamless interaction with Erlang/OTP
and all libraries

e«

LFE - Lisp Flavoured Erlang |10

NEW SKIN FOR THE
OLD CEREMONY

=

New Skin for the Old Ceremony

LFE libraries OTP
LFE OTP

Erlang
ERLANG BEAM

The thickness of the skin affects how efficiently the new
language can be implemented and how seamlessly it can
Interact

@

LFE - Lisp Flavoured Erlang 12

=

What IS the BEAM?

A virtual machine to run
Erlang

LFE - Lisp Flavoured Erlang 13

=i

Properties of the BEAM

e Lightweight, massive concurrency
e Asynchronous communication

e Process isolation

e Error handling

e Continuous evolution of the system
e Soft real-time

These we seldom have to directly worry about in a
language, except for receiving messages

LFE - Lisp Flavoured Erlang |4

=i

Properties of the BEAM

e Immutable data

e Predefined set of data types
e Pattern matching

e Functional language

e Modules/code

e No global data

These are what we mainly “see” directly in our
languages

%

LFE - Lisp Flavoured Erlang |5

Features of LFE

e Syntax

e Data types

e Modules/functions
e Lisp-1vs. Lisp-2
e Pattern matching
e Macros

\\@

LFE - Lisp Flavoured Erlang

Syntax

e [..] analternative to (..)
e Symbol is any number which is not a number
e | a quoted symbol |
o () [1 4}y . “ , ,@ #(#b(#m(separators
o #(..) tuple constant
e #b(..) binary constant
e "abc” <—> (97 98 99)
e #\a or #\xab; characters
#"abc” binary string

@

LFE - Lisp Flavoured Erlang

Data types

e LFE has a fixed set of data types

— Numbers

— Atoms (lisp symbols)
— Lists

— Tuples (lisp vectors)
— Maps

— Binaries

— Opaque types

LFE - Lisp Flavoured Erlang

Atom/symbols

e Only has a name, no other properties
e ONE name space

e No CL packages

— No name munging to fake it
— foo in pac = bar:foo

e Booleans are atoms, true and false

e

LFE - Lisp Flavoured Erlang

Binaries

(binary 1 2 3)
(binary (t little-endian (size 16))
(u (size 4))
(v (size 4))
(f float (size 32))
(b bitstring))

e Byte/bit data with constructors
e Properties are type, size endianess, sign

e But must do ((foo a 35))

%

LFE - Lisp Flavoured Erlang

20

=

Binaries

(binary (ip-version (size 4)) (h-len (size 4))
(srvc-type (size 8)) (tot-len (size 16))
(id (size 16)) (flags (size 3))
(frag-off (size 13)) (ttl (size 8))
(proto (size 8)) (hrd-chksum (size 16))
(src—ip (size 32)) (dst-ip (size 32))
(rest bytes))

e |P packet header

LFE - Lisp Flavoured Erlang 21

Records

e Not new data types
e Records are tagged tuples
e Provide named fields to a tuple

e Tuple tagged with record name

#(person "Robert Virding”
62
(hacker erlang lisp 1fe))

8

LFE - Lisp Flavoured Erlang

22

=i

Records

(defrecord name field-def-1 field-def-2 ...)

field-def = field-name | (field-name default-val)

Defines record access macros

(make-name field-name val ...)
(is—name rec)
(match-name field-name val ...)

(name-field rec)
(set—name-field rec val)
(set—-name rec field-name val ...)

%

LFE - Lisp Flavoured Erlang 23

Modules and functions

e Modules are very basic

On
On

vy have name and exported functions
y contains functions

— Flat module space

e Modules are the unit of code handling

— compilation, loading, deleting

e Functions only exist in modules
— Except in the shell (REPL)

e NO interdependencies between modules

b

LFE - Lisp Flavoured Erlang

24

Modules and functions

(defmodule arith
(export (add 2) (add 3) (sub 2)))

(defun add (a b) (+ a b))
(defun add (a b c) (+ a b c))

(defun sub (a b) (- a b))

e Function definition resembles CL
e Functions CANNOT have a variable number of arguments!

e Can have functions with the same name and different number of
arguments (arity), they are different functions

%

LFE - Lisp Flavoured Erlang 25

Modules and functions

e LFE modules can consist of

— Declarations

— Function definitions

— Macro definitions

— Compile time function definitions

e Macros can be defined anywhere, but must be
defined before being used

8

LFE - Lisp Flavoured Erlang

=i

e How symbols are evaluated in the function
position and argument position

Lisp-1 vs. Lisp-2

e In Lisp-1 symbols only have value cells

(foo 42 bar)

~N /

value

e In Lisp-2 symbols have value and function cells

(foo 42 bar)

N/

function value

LFE - Lisp Flavoured Erlang 27

Lisp-1 vs. Lisp-2

(defun foo (x y) ..)
(defun foo (x y z) ..)

(defun bar (a b c)
(let ((baz (lambda (m) ..)))
(baz c)
(foo a b)
(foo 42 a b)))

e With Lisp-1 in LFE | can have multiple top-level functions with
the same name, foo/2 and foo/3

e But only one local function with a name, baz/1

THIS IS INCONSISTENT!

LFE - Lisp Flavoured Erlang

28

Lisp-1 vs. Lisp-2

(defun foo (x y) ..)
(defun foo (x y z) ..)

(defun bar (a b c)
(flet ((baz (m) ..)
(baz (m n) ..))
(foo a b)
(foo 42 a b)
(baz c)
(baz a c)))

e With Lisp-2 in LFE | can have multiple top-level and local
functions with the same name, foo/2, foo/3 and baz/1, baz/2

%

THIS IS CONSISTENT!

LFE - Lisp Flavoured Erlang 29

=

e Erlang/LFE functions have both name and arity
e Lisp-2 fits Erlang VM better
e LFE is Lisp-2, or rather Lisp-2+

Lisp-1 vs. Lisp-2

LFE - Lisp Flavoured Erlang 30

=

Pattern matching

e Pattern matching is a BIG WIN™
e The Erlang VM directly supports pattern matching

e We use pattern matching everywhere

— Function clauses
— let, case and receive
— In macros cond, Lc and bc

\\@

LFE - Lisp Flavoured Erlang 31

Pattern matching

(let ((<pattern> <expression>)
(<pattern> <expression>)

)

(case <expression>
(<pattern> <expression> ..)
(<pattern> <expression> ..)

e)

(receive
(<pattern> <expression> ..)
(<pattern> <expression> ..)

)

e Variables are only bound through pattern matching

LFE - Lisp Flavoured Erlang

32

Pattern matching

(defun name
([<patl> <pat2> ..] <expression> ..)
([<patl> <pat2> ..] <expression> ..)

)

(cond (<test> ..)
((?= <pattern> <expr>) ..)

)

e Function clauses use pattern matching to select clause

%

LFE - Lisp Flavoured Erlang

33

=

Macros

e Macros are UNHYGIENIC

— But not so bad as all variables are scoped and cannot
be changed

e No (gensym)

— Cannot create unique atoms
— Unsafe in long-lived systems

e Only compile-time at the moment
— Except in the shell (REPL)

e Core forms can never be shadowed

s

LFE - Lisp Flavoured Erlang 34

=i

Macros

(defmacro add-them (a b) “(+ ,a ,b))

(defmacro avg args ; (&rest args) in CL
“(/ (+ ,@args) ,(length args)))

(defmacro listx
((list e) e)
((cons e es) ‘(cons ,e (listx . ,es)))

() ()))

e Macros can have any other number of arguments
— But only one macro definition per name

e Macros can have multiple clauses like functions
— The argument is then the list of arguments to the macro

e We have the backquote macro

b‘i LFE - Lisp Flavoured Erlang 35

Code example

(defun ringing-a-side (addr b-pid b-addr)

(receive
('on-hook
(! b-pid 'cleared)
(tele-os:stop-tone addr)
(idle addr))
('answered
(tele-os:stop-tone addr)
(tele-os:connect addr b-addr)
(speech addr b-pid b-addr))
(“#(seize ,pid)
(! pid 'rejected)
(ringing-a-side addr b-pid b-addr))
(

(ringing-a-side addr b-pid b-addr))
))

=

(defun ringing-b-side (addr a-pid)
(receive
('cleared
(tele-os:stop-ring addr)
(idle addr))
('off_hook
(tele-os:stop-ring addr)
(! a-pid 'answered)
(speech addr a-pid 'not-used))
(“#(seize ,pid)
(! pid 'rejected)
(ringing-b-side addr a-pid))
(_
(ringing-b-side addr b-pid))))

LFE - Lisp Flavoured Erlang

36

=

Ongoing work

e Call inter-module macros (mod:macro ...)
— Compile-time so far, run-time perhaps (can do it)
e Lisp Machine Flavors

— Pre-cursor to CLOS
— A not too-bad mapping with many cool properties

e Clojure interface
e Lisp Machine Structs

— More versatile formatting and access
— Subsumes records and Elixir structs

\‘:’
\
\
\

'

\

\

\

\

\

LFE - Lisp Flavoured Erlang 37

WHY? WHY? WHY?

| like Lisp
| like Erlang

| like to implement
languages

So doing LFE seemed
natural

LFE - Lisp Flavoured Erlang

%

Robert Virding: rvirding@gmail.com
@rvirding

LFE

http://Ife.io/

https://github.com/rvirding/Ife
https://github.com/Ife
http://groups.google.se/group/lisp-flavoured-erlang
IRC: #erlang-lisp, Twitter: @ErlangLisp

=

LFE - Lisp Flavoured Erlang 39

