\ &=
Y o=

N
Phoenix
Framework

@josevalim / phoenixframework.org

Glossary

Phoenix (web framework)
Elixir (programming language)
Erlang VM

2 million connections
on a single node

http://blog.whatsapp.com/index.php/
2012/01/1-million—-1s-s0-2011/

http://blog.whatsapp.com/index.php/2012/01/1-million-is-so-2011/
file://localhost/Users/jose/Desktop/erlang-logo.svg

Intel Xeon (CPU X5675 @ 3.07GHz
24 (PU - 96GB
Using 40% of (CPU and Memory

file://localhost/Users/jose/Desktop/erlang-logo.svg

Phoenix
Channels

var socket = new Phoenix.Socket("/ws"):
socket.connect();

var channel = socket.channel(“chat: Lobby");

channel.on("user joined", function(message){
/] e
1);

channel.on('"new _message'", function(msg){
[/ e
1)

$input.on("enter', function(e){

channel.push(“new message”, {
content: $input.val(),
username: App.username

});
});

channel.join();

defmodule Chat.UserSocket do
use Phoenix.Socket

channel "chat: Lobby"™, Chat.LobbyChannel
channel "room:*", Chat.RoomChannel

def connect(params, socket)
def id(socket)
end

defmodule Chat.LobbyChannel do
use Phoenix.Channel

def join("chat: lLobby", message, socket) do
broadcast! socket, “user joined”,
%{username: message[“username"]}
{:0k, socket}
end

def handle_in('"'new _message", message, socket) do
broadcast socket, "new message",
%1content: message[''content"],
username: messages[“username'"]}
socket
end
end

Qutside view

Server

Browser

“Browser" (IE)

Server

Native Mobile

Embedded Device @9

Inside view

Channels

socket.join(channel
Transport join)

socket.connect() @

@

- Distributed Erlang
- |solated . Redis
- Concurrent , POSth'ESQL?

Client Server . XMPP?

k‘;‘, Phoenix Framework GUIDES DOCS COMMUNITY GITHUB NEWS Search Q R VAR
.

Productive. Reliable. Fast.

A productive web framework that

does not compromise speed and maintainability

Build APIs, HTML 5 apps & more

See our guides

HOW IS PHOENIX DIFFERENT? BUILDING THE NEW WEB BATTLE-PROVEN TECHNOLOGY

Phoenix is a framework for building HTML5 Channels provide real-time streaming within Phoenix leverages the Erlang VM ability to
apps, APl backends and distributed systems. Phoenix for building rich, interactive handle millions of connections concurrently

phoenixframeworR.org

Performance

Channels
Performance

Subscribers per second

Clients
2.50e+6

2.00e+6

1.50e+6

1.00e+6

500000

1
0
0 100 200 300 400 500

Time (s)

htop

| 0.0%] 11 [| 0.5%] 1 [0.0%] 31 [0.0%]
2 | 0.0%] 12 [| 0.5%] 22 [0.0%] 32 [0.0%]
3 0 0.0%] 13 [0.0%] 23 [0.0%] 33 [0.0%]
4 [1.0%] 14 [0.0%] 24 [| 0.5%] 34 [0.0%]
5 [0.5%] 15 [0.0%] 25 [0.0%] 35 [0.0%]
6 [0.5%] 16 [0.0%] VA | 0.0%] 36 [0.0%]
7 [0.0%] 17 [0.0%] 27 [0.0%] 37 [0.0%]
8 [| 1.0%] 18 [0.0%] 28 [| 0.5%] 38 [0.0%]
9 [0.0%] 19 [0.0%] 29 [0.0%] 39 [0.0%]
10 [0.0%] 20 [0.0%] 30 [0.0%] 40 [0.0%]
Mem[|||||]|]|II|I||]]|83765/128906MB] Tasks: 22, 150 thr; 2 running

Swpl 0/0MB] Load average: 5.98 5.45 3.98

Uptime: 5 days, 11:17:13

PID USER NI VIRT RES SHR S CPU% MEM% TIME+ Command
17402 root O 84.9G 74.0G 6192 S 16.7 58.8 42:31.15 /usr/lib/e
17569 root 2@ © 84.9G 74.0G 6192 S 0.0 58.8 0:22.80 /usr/lib/er
17570 root © 84.9G 74.0G6 6192 S 1.0 58.8 0:07.96 /usr/lib/er

FF2FFF5FFFFF1

HTTP(S)
Performance

Library Throughput (req/s) Latency (ms)
Plug (elixir) 198 328 0.63
Phoenix (elixir) 179 685 0.61
Gin (go) 176 156 0.65
Play (scala) 171 236 1.89
Express Cluster (node) 92 064 1.24
Martini (go) 32 077 3.35
Sinatra (ruby) 30 561 3.50

Rails (ruby) 11 903 8.50

S wrk -t20 -¢100 -d30S --timeout 2000
https://github.com/mroth/phoenix-showdown

Inside view

- |solated
- Concurrent

@ /search?g=elixir

Client Server

Isolated and Concurrent

Crashes are isolated
Data is isolated

(GC i's per process, no global pauses)
Load balances on |0 and (PU

(efficient on multicore)

Productivity

Productivity

Short-term productivity
Documentation / Guides
Workflows / Generators

Long-term productivity
Introspection
Maintainability

E\?\Phoenix Framework GUIDES DOCS COMMUNITY — GITHUB NEWS

INTRODUCTION U P And Runni ng

Overview

Installation

Learning The aim of this first guide is to get a Phoenix application up and running as quickly as possi

Community Before we begin, please take a minute to read the Installation Guide. By installing any nece

e we'll be able to get our application up and running smoothly.

Up And Running At this point, we should have Elixir, Erlang, Hex, and the Phoenix archive installed. We shoi

Adding Pages node.js installed to build a default application.

Routing Ok, we're ready to go!
Plug
P We canrun mix phoenix.new from any directory in order to bootstrap our Phoenix applic:
ontrollers
Views an absolute or relative path for the directory of our new project. Assuming that the name ¢
hello phoenix , either of these will work.
Templates
Channels . . o -
$ mix phoenix.new /Users/me/work/elixir-stuff/hello_phoenix
Ecto Models
FESTING $ mix phoenix.new hello_phoenix

Introduction

Models A note about Brunch.io before we begin: Phoenix will use Brunch.io f
default. Brunch.io's dependencies are installed via the node package
Phoenix will prompt us to install them at the end of the mix phoenix.

The 3
Pragmatic

ogramimers

Pro ammmg
hoenix

Productive |> Reliable |> Fast

Chris McCord, N

Bruce Tate,
and José Valim

edited by Jacquelyn Carter

Model / View / Controller

conn

Model
Struct

Queries

Changesets

Generators as learning tools

$ mix phoenix.gen.html
$ mix phoenix.gen.json
$ mix phoenix.gen.channel

More...

Form builders

Static build tools with ES6 as default
Live reloading

Pretty error pages

First-class concurrent test tools
Packages via hex.pm

Long term
productivity:
Applications

(lient

Application

Applications

Package and run our code

(an be started and stopped as a unit
Provide unified configuration

Hold processes and state in the
supervision tree

Observer Demo

Applications

Introspection & Monitoring
Visibility of the application state
Fasy to break into ‘components’
Reasoning when things go wrong

Summing up

k‘;‘, Phoenix Framework GUIDES DOCS COMMUNITY GITHUB NEWS Search Q R VAR
.

Productive. Reliable. Fast.

A productive web framework that

does not compromise speed and maintainability

Build APIs, HTML 5 apps & more

See our guides

HOW IS PHOENIX DIFFERENT? BUILDING THE NEW WEB BATTLE-PROVEN TECHNOLOGY

Phoenix is a framework for building HTML5 Channels provide real-time streaming within Phoenix leverages the Erlang VM ability to
apps, APl backends and distributed systems. Phoenix for building rich, interactive handle millions of connections concurrently

phoenixframeworR.org

The 3
Pragmatic

ogramimers

Pro ammmg
hoenix

Productive |> Reliable |> Fast

Chris McCord, N

Bruce Tate,
and José Valim

edited by Jacquelyn Carter

INSTALL GETTING STARTED

Elixir

l n n
Elixir is a dynamic, functional language designed for building scalable
and maintainable applications.

3

def ins pect(), do: Elixir leverages the Erlang VM, known for running low-latency,

def inspect(true), do: distributed and fault-tolerant systems, while also being successfully used

def inspect(nil),

T in web development and the embedded software domain.
def inspect(:""),

To learn more about Elixir, check our getting started guide. Or keep

def inspect(atom) dc

reading to get an overview of the platform, language and tools.

Platform features

Scalability

All Elixir code runs inside lightweight threads of execution (called processes) that are isolated and

exchange information via messages:

LEARNING DOCS BLOG PACKAGES

News: Elixir v1.0 released

« #elixir-lang on freenode IRC

» elixir-talk mailing list (questions)

» elixir-core mailing list (development)
» Issue tracker

* @elixirlang on Twitter

* Source Code
» Wiki with events, resources and talks

organized by the community

~ 1 - N . 1
Crach Frotiree for Frilano deavelanare

elixir-lang.org

The .
Pragmaltic
grammers

o |
Elear e

| ITTTHT Functional

|> Concurrent
|> Pragmatic IR G STARTED IN FUNCTIONAL PROGRAMMING
|> Fun :

Simon St.Laurent & J. David Eisenberg

Dave Thomas

Foreword by
José Valim,
Creator of Elixir

edited by Lynn Beighley

plotaformatec

consulting and software engineering

\ &=
Y o=

N
Phoenix
Framework

@josevalim / phoenixframework.org

