
Reactive programming in
ClojureScript using React.js wrappers

Konrad Szydlo @ Lambda Days, Krakow, 19 February 2016

State of the web
development

 More and more complex apps

Solving elaborate problems

Myriad of web browsers and devices

Performance and resources

Plain vanilla JavaScript

JQuery

MVC

React.js

What does it mean
reactive?

Erik Meijer - What does it mean to be Reactive?

Lots of definitions

Difficult to agree

Components reacting to events and changing
state

Apples

Oranges

Grapes

Add pineapple

But how exactly?

Solution #1

Insert a new list item

Find the right place

Solution #2

Throw out the entire list and rebuild it

Rendering large scale amounts of DOM is slow

Most JS frameworks help to mitigate problem #1

Make DOM easier to navigate

Tie element to a controller keeping it up to date

React solves problem #2

Virtual DOM (two copies)

Original

Updated

Compare new virtual DOM with previous

Render only bits that have changed

Pretending to re-render entire page is fast

Easier to reason about

V in MVC

Interfaces with changing data

Can combine with frameworks e.g. AngularJS

Flux architecture

Once-directional data flow

Action → Dispatcher → Store → View

JavaScript sucks

this

Verbose syntax

Confusing, inconsistent automatic operator
conversions

NaN

Global variables by default

etc.

We need JavaScript

JS is (almost) everywhere

Runtime is improving

Web Sockets

WebRTC

Canvas

Push notifications

Build “better” language on top of JS

 1 + 2 // simple, clear

 (+ 1 2) ; OMG! So confusing

Clearly programmers aren't that smart as some think

ClojureScript

Modern LISP

Immutable data structures

State vs Identity

REPL

Transducers

core.async

And much much more

ClojureScript + React.js

Pure React.js is not idiomatic in ClojureScript

Leverage immutable data structures

ClojureScript React.js wrappers on steroids

Rum

Not a framework but a library

Om, Reagent, Quiescent have built-in component
behaviour model

Rum

Two-level API

Rum

Define your component and render it

(rum/defc name doc-string? [params*] render-
body+)

(rum/defc h1 [text]
 [:h1 text])

 (rum/mount (h1 "important") js/document.body)

Simple component not reactive

Agnostic of data storage and behaviour model

Use mixins to control component's behaviour

Pre-built component mixins

Mimic behaviour of other wrappers

(rum/defc name doc-string? [< mixins+]?
[params*] render-body+)

Static mixin

Checks if args have changed

Avoids re-rendering if they are the same

(rum/defc h1 < rum/static [text]
[:h1 text])

(rum/mount (h1 "important text") body)

(rum/mount (h1 "important text") body) ;; render
won’t be called

(rum/mount (h1 "important") body) ;; this will
cause re-rendering

Local Mixin

Rum local

Per-component local state

(rum/defcs make-service < (rum/local "") [state service]
(let [local (:rum/local state)]

 [:p {:class @local

 :on-click (fn [_] (swap! local toggle-class service))}

 (:name service)

 [:b (str " £" (:price service))]]))

(defn toggle-class [current-class service]
 (let [price (:price service)]

 (if (= current-class "active")

 (do (swap! order-form-total - price)

 "")

 (do (swap! order-form-total + price)

 "active"))))

Reactive mixin

Creates “reactive” component

Tracks references to data

Auto-updates when value stored changes

Reactive mixin is like Reagent wrapper

(def order-form-total (atom 0))

(rum/defc total-sum < rum/reactive []
 [:p {:id "total"} (str "Total: £" (rum/react order-form-total))])

(defn toggle-class [current-class service]
 (let [price (:price service)]

 (if (= current-class "active")

 (do (swap! order-form-total - price)

 "")

 (do (swap! order-form-total + price)

 "active"))))

Cursored mixin

Interface to sub-trees inside an atom

Like an Om wrapper

(def state (atom {:app {
 :settings {:header {:colour "#cc3333" }}}}))

(rum/defc label < rum/cursored [colour text]
 [:label {:style {:colour @colour}} text])

(rum/defc body < rum/cursored [state]
 [:div

 (label (rum/cursor state [:app :settings :headers :colour])
"First label")])

(swap! state-cursor assoc-in [:app :settings :header :colour]
"#cc56bb")

 One global state

Atomic swaps

Always consistent

Easy to implement undo – reset to previous
state

Serialize app state and send it over the wire

Custom mixin

 Use React.js life-cycle functions

Will mount

Did mount

Should update

Will unmount

 Scrolling mixin

 (defn scroll-view [height]
 {:did-mount (fn [state]

 (if-not (::scrolled state)

 (do

 (set-scroll-top! height)

 (assoc state ::scrolled true))

 state))

 :transfer-state (fn [old new]

 (assoc new ::scrolled (::scrolled old)

 ::with-scroll-view true))})

 Build new mixins easily

 Mix and match different mixins

 The curious case of Om

 The good, the bad and the future

Root UI is given root cursor

Passes sub-trees of cursors to its sub-components

{:list {:title "My list:" :colour :brown My list:

 :items

 {:item_1 {:text "text1" :colour :blue} - text1

 :item_2 {:text "text2" :colour :green} - text2

 :item_3 {:text "text3" :colour :red}}}} - text3

Case #1

 UI cross-cutting concerns?

Dashboard with a list that can be expanded,
shrank

Save the list presentation options to general
settings?

Cursor-oriented architecture requires you to
structure app state as a tree (matching UI)

Quite often your data are not a tree

 Changing item's text is easy

Case #2

 Deleting an item should be easy too, right?

Does delete button/option belong to an item or a
list?

Deleting an item requires list manipulation

Rum is flexible use it if you can

Enter Om.next

New version of Om

Actually a reboot

Experience of the last few years

Inspired by:

Facebook's Relay

Netflix's Falcor

Cognitect's Datomic

Display date of past purchases of certain item

{:current-user

 {:purchases

 [{:id 146

 :product-name "organic rice"

 :date #inst "2015-12-17T17:13:59.167-00:00"

 :previous {:id 140

 :product-name "organic rice"

 :date #inst "2015-12-14T17:05:58.144-00:00"

 :previous {:id 136

 :product-name "organic rice"

 :date #inst "2015-12-10T17:05:13.512-00:00"

 :previous ; and so on... }}}

 {:id 145

 :product-name "soy milk"

 :date #inst "2015-12-17T17:09:25.961-00:00"

 :previous {:id 141

 :product-name "soy milk"

 :date #inst "2015-12-15T17:05:36.797-00:00"

 :previous {:id 128

 :product-name "soy milk"

 :date #inst "2015-12-07T17:04:51.124-00:00"

 :previous ; and so on... }}}]}}

{:current-user {:recent-purchases [[:purchase-id 146]

 [:purchase-id 145]]}

 :purchased-items {146 {:id 146

 :product-name "organic rice"

 :date #inst "2015-12-17T17:13:59.167-00:00"

 :previous [:purchase-id 144]}

 145 {:id 145

 :product-name "soy milk"

 :date #inst "2015-12-17T17:09:25.961-00:00"

 :previous [:purchase-id 143]}

 144 {:id 144

 :product-name "organic rice"

 :date #inst "2015-12-17T17:05:58.144-00:00"

 :previous [:purchase-id 141]}

 143 {:id 143

 :product-name "soy milk"

 :date #inst "2015-12-17T17:05:36.797-00:00"

 :previous [:purchase-id 138]}

 ;; and so on... }}

In Om.next components define a query to data
they need

Cursor navigates a tree, query can navigate a
graph

[{:current-user [{:recent-purchases [{:previous [:date]}]}]}]

{:current-user
 {:recent-purchases

 [{:previous {:date #inst "2015-12-17T17:05:58.144-00:00"}}

 {:previous {:date #inst "2015-12-17T17:05:36.797-00:00"}}]}}

{:current-user {:recent-purchases [[:purchase-id 146]

 [:purchase-id 145]]}

 :purchased-items {146 {:id 146

 :product-name "organic rice"

 :date #inst "2015-12-17T17:13:59.167-00:00"

 :previous [:purchase-id 144]}

 145 {:id 145

 :product-name "soy milk"

 :date #inst "2015-12-17T17:09:25.961-00:00"

 :previous [:purchase-id 143]}

 144 {:id 144

 :product-name "organic rice"

 :date #inst "2015-12-17T17:05:58.144-00:00"

 :previous [:purchase-id 141]}

 143 {:id 143

 :product-name "soy milk"

 :date #inst "2015-12-17T17:05:36.797-00:00"

 :previous [:purchase-id 138]}

 ;; and so on... }}

{:current-user
 {:recent-purchases

 [{:previous {:date #inst "2015-12-17T17:05:58.144-00:00"}}

 {:previous {:date #inst "2015-12-17T17:05:36.797-00:00"}}]}}

Om.next normalizes data* you have into one you
expect

* with a little help from you

{:list/one [{:product-name "soy milk" :price 10}
 {:product-name "eggs" :price 22}

 {:product-name "juice" :price 26}]

 :list/two [{:product-name "eggs" :price 22 :discount 7}

 {:product-name "apples" :price 8}

 {:product-name "cereals" :price 37 :discount 15}]}

(defui Product
 static om/Ident

 (ident [this {:keys [product-name]}]

 [:product/by-name product-name])

 static om/IQuery

 (query [this]

 '[:name :price :discount])

 Object

 (render [this]

 ;; ... elided ...))

(d{:list/one
 [[:product/by-name "soy milk"]

 [:product/by-name "eggs"]

 [:product/by-name "juice"]],

 :list/two

 [[:product/by-name "eggs"]

 [:product/by-name "apples"]

 [:product/by-name "cereals"]],

 :product/by-name

 {"soy milk" {:name "soy milk", :price 10},

 "eggs" {:name "eggs", :price 22, :discount 7},

"juice" {:name "juice", :price 26},
 "apples" {:name "apples", :price 8},

 "cereals" {:name "cereals", :price 37, :discount 15}}

Store data the way you want and let Om.next
convert data to match your UI

Om.next

Currently in alpha stage

Production ready in a couple of months

Datascript

 Because good things come in pairs

Nikita Prokopov creator of Rum and Datascript

 Immutable in-memory database

Datalog as a query engine

Central, uniform approach to manage all
application state

 Schemaless DB < Datascript < Relational schema

Data already normalized

 {:db/id #db/id[:db.part/db]

 :db/ident :product/name

 :db/valueType :db.type/string

 :db/cardinality :db.cardinality/one

 :db/unique :db.unique/identity

 :db/doc "Product's name"}

{:db/id #db/id[:db.part/db]

 :db/ident :product/price

 :db/valueType :db.type/number

 :db/cardinality :db.cardinality/one

 :db/doc "Product's price"}

Datalog query

 [:find ?name ?price ?discount
 :where
 [?p :product/name ?name]
 [?p :product/price ?price]
 [?p :product/discount ?discount]]

(defui Product
 static om/Ident

 (ident [this {:keys [product-name]}]

 [:product/by-name product-name])

 static om/IQuery

 (query [this]

 '[:name :price :discount])

 Object

 (render [this]

 ;; ... elided ...))

Find specific item

 [:find ?name ?price ?discount
 :in $?name
 :where
 [?p :product/name ?name]
 [?p :product/price ?price]
 [?p :product/discount ?discount]]

 (rum/defc product-item [db name]

 (let [item (d/q '[:find ?name ?price ?discount
 :in $?name
 :where
 [?p :product/name ?name]
 [?p :product/price ?price]
 [?p :product/discount ?discount]]
 db name)]

 (when item

 [:p name "$" (:product/price item) "discount $" (:product/discount item)])))

Write components that depend on return values
of queries

Database as a value

Summary

React.js is interesting – give it a go

ClojureScript is interesting too

React.js + ClojureScript = awesome

Interesting wrappers for React.js in ClojureScript
with some cool technologies

Questions???

 Tweet me: @ryujinkony

Konrad Szydlo
github

retailic.com

https://github.com/konradszydlo
http://retailic.com/

Retailic

Retailic helps retail to draw business conclusions
from consumer behaviour and develop
corresponding software solutions.

Resources

https://www.youtube.com/watch?v=sTSQlYX5DU0
 Eric Meijer

https://medium.com/@carloM/reactive-programming
-with-kefir-js-and-react-a0e8bb3af636#.td9mdlfz
r
 Reactive programming with react.js

http://blog.ractivejs.org/posts/whats-the-differen
ce-between-react-and-ractive/
 React.js vs Ractive

http://www.funnyant.com/reactjs-what-is-it/

https://www.youtube.com/watch?v=sTSQlYX5DU0
https://medium.com/@carloM/reactive-programming-with-kefir-js-and-react-a0e8bb3af636#.td9mdlfzr
https://medium.com/@carloM/reactive-programming-with-kefir-js-and-react-a0e8bb3af636#.td9mdlfzr
https://medium.com/@carloM/reactive-programming-with-kefir-js-and-react-a0e8bb3af636#.td9mdlfzr
http://blog.ractivejs.org/posts/whats-the-difference-between-react-and-ractive/
http://blog.ractivejs.org/posts/whats-the-difference-between-react-and-ractive/
http://www.funnyant.com/reactjs-what-is-it/

Resources

https://www.destroyallsoftware.com/talks/wat

https://github.com/active-group/reacl

https://github.com/reagent-project/reagent

https://github.com/tonsky/rum

https://github.com/tonsky/datascript

https://github.com/omcljs/om/wiki

https://www.destroyallsoftware.com/talks/wat
https://github.com/active-group/reacl
https://github.com/reagent-project/reagent
https://github.com/tonsky/rum
https://github.com/tonsky/datascript

	Slide 1
	Fonts & Bullets
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

