
Things that Matter
Decisions that Shape Languages

the
incubator

“The primary motivation was to amuse myself.”

“I like the way it makes programming enjoyable.”

- Matz

“So, we started Lua with the very specific goal of
providing a language for problems that need a

good configuration language.”
- Roberto Ierusalimschy

“So, we started Lua with the very specific goal of
providing a language for problems that need a

good configuration language.”
- Roberto Ierusalimschy

elm

elm
The best of functional programming in your browser

elm
“Many functional folks have a way of saying

extremely interesting and useful things in a totally
inaccessible impractical way, and I wanted to fix this.”

elm
“Many functional folks have a way of saying

extremely interesting and useful things in a totally
inaccessible impractical way, and I wanted to fix this.”

elm
“Many functional folks have a way of saying

extremely interesting and useful things in a totally
inaccessible impractical way, and I wanted to fix this.”

elm
“Many functional folks have a way of saying

extremely interesting and useful things in a totally
inaccessible impractical way, and I wanted to fix this.”

elm

elm
“Elm is not about being theoretically better. It is

about being demonstrably better.”

- Evan Czaplicki

Haskell

Haskell

Haskell
“On the lazy side (of FP), you had as

many programming languages as there
were researchers.”

Haskell
“If he (David Turner, Miranda) had said yes (to

making Miranda the single standard for
research of lazy FP), Haskell would not exist.”

- John Hughes

Haskell

“I wanted a Lisp for Functional
Programming, symbiotic with an established

Platform, and designed for Concurrency.”

“I wanted a Lisp for Functional
Programming, symbiotic with an established

Platform, and designed for Concurrency.”

“I wanted a Lisp for Functional
Programming, symbiotic with an established

Platform, and designed for Concurrency.”

“I wanted a Lisp for Functional
Programming, symbiotic with an established

Platform, and designed for Concurrency.”

“I wanted a Lisp for Functional
Programming, symbiotic with an established

Platform, and designed for Concurrency.”
- Rich Hickey

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.”

...

?

.

the
incubator

Your origins
shape you

Know your
community

• Population

• Support

• Investment

• Population

• Support

• Investment

• Population

• Community

• Investment

elm

elm

• Population

• Support

• Investment

elm

MINSWAN

Matz Is Nice So We Are Nice

Matz Is Nice So We Are Nice

MINSWAN

Polish

Know your
community

Make a Stand

Syntax has a profound
impact on marketshare

Syntax has a profound
impact on productivity

“Languages are enhancers for
your mind that shape the way

you attack programming.”

Sugar makes programmers
more productive

Syntax must be simple

Syntax must be simple

Syntax has a profound
impact on marketshare

Syntax has a profound
impact on program design

Syntax must be profoundly
simple and uniform

Syntax must be profoundly
simple and uniform

Syntax must be profoundly
simple and uniform
The tree

Syntax must be profoundly
simple and uniform
The tree

Syntax has a profound
impact on marketshare

Syntax has a profound
impact on marketshare

Syntax has a profound
impact on marketshare

StandsStands

Haskell

We will be lazy

Our functions will be pure

Our types are strict and static

Make concurrency simple

Let it crash

elm

Approachable Theory

Callbacks Stink

Make a Stand

Adapt or die.

Efficient
Program
Design

Idea

Idioms

Abstractions

class	Object	

		def	blank?	

				false	

		end	

end

class	String	

		def	blank?	

				self	==	""	

		end	

end

class	NilClass	

		def	blank?	

				true	

		end	

end

[nil,	4,	""].map	do	|item|	

		item.blank?	

end	

Efficient
Program
Design

Efficient
Program
Design

Efficient
Language
Design

Adaptation

Extension

Macros

(+ 1 2)

('+ 1 2)

Top	=	self,		

Ref	=	make_ref,		

		

Pid	=	spawn_link(fun	->		

		Top	!	{	Ref,	...	}	

),		

		

receive		

		{	Ref,	Value	}	->	Value	

end

task	=	Task.async(&do_something/0)	

#	do	something	concurrently	

result	=	Task.await(task)

||

|>

defmacro

defprotocol

widgets	

|>	Enum.filter...	

|>	Enum.map...	

|>	Enum.take(5)	

widgets	

|>	Stream.filter...	

|>	Stream.map...	

|>	Enum.take(5)	

widgets	

|>	Stream.expensive1...	

|>	Stream.expensive2...	

|>	Enum.take(5)	

widgets	

|>	Stream.expensive1...	

|>	?	

|>	Stream.expensive2...	

|>	?	

|>	Enum.take(5)	

widgets	

|>	Stream.expensive1...	

|>	async_process...	

|>	Stream.expensive2...	

|>	async_process...	

|>	Enum.take(5)	

widgets	

|>	Expensive.task1...	

|>	?	

|>	Expensive.task2...	

|>	?	

|>	Enum.take(5)	

widgets	

|>	Expensive.task1...	

|>	process_farm(10)	

|>	Expensive.task2...	

|>	process_farm(20)	

|>	Enum.take(5)	

widgets	

|>	Expensive.task1...	

|>	distribute(10)	

|>	Expensive.task2...	

|>	distribute(20)	

|>	Enum.take(5)	

widgets	

|>	distribute(20)	

|>	Stream.expensive1...	

|>	Stream.expensive2...	

|>	Stream.expensive3...	

|>	Enum.take(n)	

Other
Examples

Other
Examples

Haskell

Other
Examples

elm

Haskell

Other
Examples

elm

Haskell

Other
Examples

elm

Haskell

Adapt or die

Your origins
shape you

Know your
customer

Make a Stand

Adapt or die

?

