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TruthLogic Types Categories

Truth intro Unit type Terminal object

true I () : ()

Truth



Proofs

Logic Types Categories

Proof of proposition A Type A is inhabited Morphism from 
terminal object

[…] 

A
Γ ├ x : A 1 → A



Category Theory



Category
• A generalisation of a graph (transitive closure) 

• Nodes are called objects: a, b, c… 

• Arrows between objects are called morphisms:  

• f :: a -> b



• Arrows are composable:  

• f :: a -> b,  

• g :: b -> c,  

• g ○ f :: a -> c    (always exists!) 

• Composition is associative 



• Identity arrows (always exist!):  

• ida :: a -> a,  

• id ○ f = f,  

• g ○ id = g



Set

• Category in which: 

• Objects are sets 

• Arrows are functions



Initial Object
• There is a unique arrow from initial object to any 

other object



Initial Object in Set

• Empty set  ⌀ 

• Unique function from  ⌀ -> a 

• absurd :: Void -> a 

• Void is the uninhabited type



Terminal Object
• There is a unique arrow from any object to terminal 

object



Terminal Object in Set
• Singleton set 

• Unique function: for every element of set a return 
the single element of the singleton set 

• Unit type () with one element () 

• unit :: a -> () 

• unit _ -> ()



Universal 
Constructions



Product (Elimination)
• c is a product of a and b 

• Two arrows p and q (projections) 

• In Set: cartesian product, pairs of elements 

• In logic: and (conjunction elimination)

c :: (a, b) 
p (a, b) = a 
q (a, b) = b

a ⌃ b 
a

a ⌃ b 
b



Product (Universality)
• Universal construction 

• Product is the “best” candidate 

• Any other candidate (c’, p’, q’) uniquely factorizes 
through (c, p, q).

m :: c’ -> c 
p’ = p ○ m 
q’ = q ○ m

Conjunction intro: 
if a follows from c’          (p’) 
and b follows from c’     (q’) 
a ⌃ b (c) follows from c’  (m)



Function Object
• Universal construction 

• Logical implication

Modus ponens 

(a=>b)  ⌃  a 
b



Currying
• g as a function of two arguments z and a 

• h is the curried version z->(a->b)



Negation

• Not A corresponds to A -> Void 

• If A inhabited, A->Void not inhabited 

• If A not inhabited (is Void), Void->Void is idVoid



Cartesian Closed Category

• CCC 

• Has all products (cartesian) 

• Has all function objects (exponentials) (closed) 

• Has terminal object (nullary product)



Curry-Howard-Lambek
• Lambek: CCC is a model for simply typed lambda 

calculus 

• Objects are types 

• Morphisms are terms 

• Environment Γ is a product of judgments a:A  

• Empty environment is ():()



Logical Universes

Classical Intuitionistic

True
True False

False

Define “is”?



Intuitionistic Logic
• No LEM 

• A | (A->Void) not provable 

• No double negation elimination 

• (A->Void)->Void not the same as A 

• Curry-Howard equivalence: simply typed lambda 
calculus equivalent to intuitionistic logic



Goedel Gentzen

• Classical logic can be embedded in intuitionistic 
logic 

• Classical logic = Intuitionistic + double negation 
elimination (or LEM) 

• Map every classical formula to its double negation



Continuations
• Double negation: (a->Void)->Void 

• More general: (a->r)->r 

• a->r is a continuation 

• CPS transform: a is identified with (a->r)->r 

• Classical logic!



Yoneda’s Lemma
• F is a functor from category C to Set 

• Hom-set is the set of morphisms between object a and 
b, C(a, b) 

• Fix a and C(a, _) is a functor from C to Set 

• Yoneda: Nat(C(a, x), F x) ~ F a 

• forall x . (a -> x) -> F x ~ F a 

• Pick F = identity functor and you get CPS



Conclusions
• It’s all the same: 

• Type theory (typed lambda calculus) 

• Category theory (Cartesian Closed) 

• Logic 

• Lots of cross-pollination 

• Grand Unified Theory? HoTT?


