
Erlang Patterns Matching Business Needs	

Torben Hoffmann	

CTO, Erlang Solutions	

torben.hoffmann@erlang-solutions.com	

@LeHoff

& Idioms

mailto:torben.hoffmann@erlang-solutions.com

Background

1980 1990 2000 2010

Basic
Logo

GW Basic
Pascal

SML
Matlab

Assembly
APL2

Mathematica
Concurrent Pascal
C++
Prolog

Concurrent ML
Gofer

Java Excel
Scripting
Perl

Erlang
C

Elixir

LaTeX

VHDL
micro code

Why this talk?

 Show the business value of Erlang	

 Introduce Erlang Patterns	

 Spread the Erlang love

CustomersSome

University Relations

Erlang History

There are two ways of constructing a
software design: 	

One way is to make it so simple that
there are obviously no deficiencies and the
other way is to make it so complicated
that there are no obvious deficiencies.	

 - C.A.R. Hoare

wanted

short time-to-market	

!

on-the-fly upgrades	

!

quality and reliability	

!
and more...

wanted
productivity	

!

no down-time	

!

something that always works	

!

wanted
money	

!

money	

!

money	

!

it’s a rich man’s world!	

General vs Domain Specific

Telecom

Erlang

C++/Java

Smaller gap 	

= 	

money!

The Sweet Spot
GUI

Drivers

Middleware	

Coordination	

Control

If the glove fits...

drivers coordination GUI

needs/fit

C

Erlang

Telecom

If our basic tool, the language in which we
design and code our programs, is also
complicated, the language itself becomes part of
the problem rather than part of its solution.	

!

- C.A.R. Hoare

Other Erlang Domains

 Messaging - XMPP et al	

 ejabberd, MongooseIM	

 Webservers	

 Yaws, Chicago Boss, Cowboy	

 Payment switches & soft switches 	

 Vocalink, OpenFlow/LINC	

 Distributed Databases	

 Riak, CouchDB, Scalaris 	

 Queueing systems	

 RabbitMQ (AMQP)

Good Erlang Domains

 Low latency over throughput	

 Stateful (in contrast to being stateless)	

 Massively concurrent	

 Distributed	

 Fault tolerant	

 Uses OTP	

 Non-stop operation

Under load, Erlang programs
usually performs as well as
programs in other languages,
often way better.	

Jesper Louis Andersen

The Golden Trinity Of Erlang

To Share Or Not To Share

Memory Memory Memory

P1 P2 P1 P2

Corrupt Corrupt

Failures

Most programming paradigmes are fault in-tolerant	

 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors	

Disk failures	

Network failures	

Erlang is fault tolerant by design	

 ⇒ failures are embraced and managed

Let It Fail
convert(Day) ->!
 case Day of!
 monday -> 1;!
 tuesday -> 2;!
 wednesday -> 3;!
 thursday -> 4;!
 friday -> 5;!
 saturday -> 6;!
 sunday -> 7!
!
!
 end.

Erlang encourages agressive/offensive programming

 ;!
 Other ->!
 {error, unknown_day}!

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Erlang	
 @	
 3x
Source:	
 h3p://www.slideshare.net/
JanHenryNystrom/produc=vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Show me the money!

Conservative estimation of the number 	

of inputs, outputs and internal storage

Includes design, box test, system test,
project management efforts

Function Point analysis of the size of the problem

Visual Erlang

Visual Erlang Objectives

 Detailed enough to capture important aspects	

 Not suited for 100% explanation of Erlang	

 Standardise on how we show Erlang architecture

Processes in Visual Erlang

Messages and Functionality

Functions & State Data

Erlang Patterns

Tuple Space Storage Pattern

Supervisors

Simple Manager/Worker Pattern

Business benefits of supervisors

 Only one process dies	

 isolation gives continuous service	

 Everything is logged	

 you know what is wrong	

 Corner cases can be fixed at leisure	

 Product owner in charge!	

 Not the software!

Software architecture
that supports

iterative development

Visual Erlang Patterns

 Adds vocabulary about architecture	

 Share insights	

 Consider failures while designing

When do I get my ROI?

Proto-typing Development Live

Speed

Some Cool Technology

Erlang

Key building blocks

 Share nothing processes	

 Message passing	

 Fail fast approach	

 Link/monitor concept	

 You can deal with failures in a sensible manner
because you have a language for them.

Elixir

 Built on top of the Erlang VM	

 More Ruby-like syntax	

 Hygienic macros - easy to do DSLs	

 But… you still have to learn the Erlang
programming model

Cruising with Erlang

 Understand the failure model	

 Embrace failure!	

 Use patterns to deliver business value	

 Stay in charge!	

