
Stochastic Synthesis of Recursive Functions

Made Easy with Bananas, Lenses, Envelopes

and Barbed Wire

Krzysztof Krawiec1 and Jerry Swan2

Poznan University of Technology, University of York

1. krawiec@cs.put.poznan.pl
2. jerry.swan@york.ac.uk

LambdaDays’19

March 14, 2019

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

The background

Program synthesis: automatic generation of programs (functions) from

examples (tests, cases, input-output pairs), or

formal specifications (e.g., contracts), or

other forms of user’s intent.

Success stories:

FlashFill1, reinventing existing algorithms, discovering unknown
algorithms, new hardware designs ...

1
Gulwani 2011.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Outline

The FP community has long been interested in principled methods
of program generation for property based testing, e.g.
QuickCheck2 and SmallCheck3 in Haskell, and the Scala
analog ScalaCheck4.

Conversely, the Metaheuristics community has long used stochastic
search for generating programs according to a quality measure, using
e.g. Genetic Programming5, Ant Programming6, ‘Estimation of
Distribution’ Programming etc.

This talk describes a hybrid approach, using principled methods to
provide a skeleton for metaheuristic search.

2
Claessen and Hughes 2000.

3
Runciman, Naylor, and Lindblad 2008.

4
Nilsson 2014.

5
Koza 1992.

6
Roux and Fonlupt 2000.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Synthesizing recursive programs

Challenges:

Testing (executing) an ill-formed recursive program may lead to
infinite sequence of nested calls.

Recursive programs are particularly brittle: a minor modification may
impact program’s behavior on multiple tests, or worse - render it
ill-formed.

Our contribution: Mitigating these problems by structuring/constraining
the generate-and-test approach with formalisms known from FP:

Algebraic Data Types

Recursion schemes.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Algebraic data types (ADTs)

Defining new data types from existing ones S and T :
1 Disjoint union: the type containing either an instance of S or an

instance of T , denoted S + T .
2 Cartesian product: denoted S ⇥ T , the type of pairs (s, t), where s

is of type S , and t is of type t.
3 Exponentiation: the type of functions from S to T , denoted T S .

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

ADT for list of integers

Haskell ADT:

data I n t L i s t = N i l | Cons I n t L i s t

Scala ADT for a list of integers and recursive length function:

s e a l e d t r a i t I n t L i s t

ca s e c l a s s N i l () e x t end s I n t L i s t

ca s e c l a s s Cons (head : I n t , t a i l : I n t L i s t) e x t end s

I n t L i s t

d e f l e n g t h (l : I n t L i s t) : I n t = l match {
ca s e N i l ()) 0

ca se Cons (head , t a i l)) 1 + l e ng t h (t a i l)

}

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Beyond lists

Lists are well-known data structures that are ‘obviously composite’.

However, virtually all familiar datatypes have such an
inductively-definable nature and can be thus be conveniently
expressed with ADTs.

Example: ADT for Nat

s e a l e d t r a i t Nat

ca s e c l a s s Zero () e x t end s Nat

ca s e c l a s s Succ (pred : Nat) e x t end s Nat

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Beyond lists

Lists are well-known data structures that are ‘obviously composite’.

However, virtually all familiar datatypes have such an
inductively-definable nature and can be thus be conveniently
expressed with ADTs.

Example: ADT for Nat

s e a l e d t r a i t Nat

ca s e c l a s s Zero () e x t end s Nat

ca s e c l a s s Succ (pred : Nat) e x t end s Nat

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Recursion schemes

Recursion schemes ‘externalize’ recursion, i.e. replace explicit recursion
with implicit recursion.

Fold for a list of integers and implicitly recursive length function:

de f f o l d L i s t [A] (l : I n t L i s t ,

n i l C a s e : A,

consCase : (Cons ,A)) A) :A = l match {
ca s e N i l ()) n i l C a s e

ca s e Cons (x , x s))
consCase (Cons (x , N i l ()) , f o l d L i s t (xs , n i l Ca s e , consCase))

}

de f l engthConsCase (c : Cons , acc : I n t) : I n t = 1 + acc

de f l e n g t h (l : I n t L i s t) : I n t =

f o l d L i s t (l , 0 , l engthConsCase)

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Catamorphisms

Catamorphism = one of most common recursion schemes.

For brevity, often denoted via ‘banana-bracket’ notation7:

Lcase1, . . . , casenM (1)

The length of a List is succinctly expressed as

L0, (l , accumulator) 7! 1 + accumulatorM, (2)

For Nats:

de f cataNat [A] (n : Nat ,

z e roCase : A,

succCase : A) A) : A = n match {
ca s e Zero ()) ze roCase

ca s e Succ (pred)) succCase (cataNat (pred , zeroCase ,

succCase))

}

7
Meijer, Fokkinga, and Paterson 1991.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Program Synthesis with Recursion Schemes

Idea: combine ADTs with catamorphisms in a method for synthesizing
recursive functions, in hope for:

Improved e↵ectiveness (by eliminating the non-terminating
candidate programs)

Improved e�ciency (by providing the skeleton of the recursion
scheme, and so constraining the search space)

Two phases:
1 Synthesis of case expressions
2 Synthesis of case callback functions

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Phase 1: Synthesis of case expressions

Requires domain-specific knowledge to inform the specific
accumulator type to be used, e.g.

a single Nat for the length function,

pairs of Nats for the Fibonacci function,

etc,

For recursive ADTs the procedure requires a Category-Theoretic
construction8, but it is still automatable.

8
Kocsis and Swan 2017b; Bird and Moor 1997.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Phase 2: Synthesis of case callback functions

Synthesizing a callback function for each case independently.

The candidate programs for each case are non-recursive.

Search can be performed with any algorithm, e.g.,
systematic exact search,

heuristic search (stochastic or not).

We engage our grammatical optimization tool ContainAnt9, an
algorithm configurator/optimiser:

1 Derives the grammar of the ‘DSL’ from client code, via reflection, by

analysing the fields/attributes (val) and method signatures (def)
2 Performs search in the space of solutions defined by the grammar.

9
Kocsis and Swan 2017a.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

The grammar

Grammar of catamorphism cases for unary functions on Nat:

<CataNat> : := <CaseZero> <CaseSucc>
<CaseZero> : := <Nat>
<Nat> : := Zero | Succ <Nat>
<CaseSucc> : := <NatExpr>
<NatExpr> : := Const <Nat>

| Var <Nat>
| Add <NatExpr> <NatExpr>
| Mul <NatExpr> <NatExpr>
| PDiv <NatExpr> <NatExpr>

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Toy Example: Synthesis of successor function

Solution sought: L1, n 7! n + 1M, or equivalently in Scala:

de f ze roCase () : Nat = Succ (Zero)

de f succCase (n : Nat) : Nat = Succ (n)

Set of examples C = {(0, 1), (1, 2), (3, 4)}.

Phase 1:

1 Automatically derive case expressions from the definition of ADT
Nat: Zero and Succ(x).

Phase 2:
1 Partition C into:

C0 = {(0, 1)}, for the Zero case,

C1 = {(1, 2), (3, 4)}, for the Succ case.

2 Apply ContainAnt to each of above problems independently.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Toy Example: Synthesis of successor function

Solution sought: L1, n 7! n + 1M, or equivalently in Scala:

de f ze roCase () : Nat = Succ (Zero)

de f succCase (n : Nat) : Nat = Succ (n)

Set of examples C = {(0, 1), (1, 2), (3, 4)}.

Phase 1:

1 Automatically derive case expressions from the definition of ADT
Nat: Zero and Succ(x).

Phase 2:
1 Partition C into:

C0 = {(0, 1)}, for the Zero case,

C1 = {(1, 2), (3, 4)}, for the Succ case.

2 Apply ContainAnt to each of above problems independently.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Experiment

Benchmarks:

Fib2: Fibonacci function

Lucas: starts with 2 and 1 as the initial elements

Pell: starts like Fibonacci, but fn = 2fn�1 + fn�2

Fib3: starts with 0, 0 and 1 and sums three preceeding elements

OddEvens: returns zeros and ones alternately for odd- and
even-depth recursive calls

Function (operator) set for program search:

Succ Successor function m 7! m + 1

Add Addition

Mul Multiplication

PDiv Protected division

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Results

Benchmark Number of successful runs (out of 50)

GE CTGGP PushGP Cata-RS Cata-AP

Fib2 40 50 7 50 50

Fib3 3 50 13 50 50

Lucas 8 50 13 50 50

OddEvens 50 50 50 50 50

Pell 41 50 0 50 50

Similar performance on: Sum, Square, Cube, Power(2,n)

Cata-RS and Cata-AP visit fewer candidate solutions on average
(lower computational e↵ort)

Statistically significant di↵erences

To appear in ‘Genetic Programming and Evolvable Machines’:
https://link.springer.com/journal/10710

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

https://link.springer.com/journal/10710

Conclusions

ADTs + Recursion Schemes = E↵ectiveness and e�ciency of synthesis.

Problems decomposed and ‘structurized’ to the extent that makes
them solvable with random search.

Prospects:

Other ADTs.

Other recursion schemes.

Optimization of non-functional properties of program execution.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Applications to other ADTs

ADTs and catamorphism for (generic) binary trees:

s e a l e d t r a i t Tree [A]

ca s e c l a s s Lea f [A] (v a l u e : A) ex t end s Tree [A]

ca s e c l a s s Node [A] (l : Tree [A] , r : Tree [A]) e x t end s Tree [A]

de f ca taTree [A,R] (a rg : Tree [A] , l e a f C a s e : A) R, nodeCase :

(R , R)) R) : R = arg match {
ca s e Lea f (v a l u e)) l e a f C a s e (v a l u e)

ca s e Node (l , r)) nodeCase (

ca taTree (l , l e a fCa s e , nodeCase) ,

ca taTree (r , l e a fCa s e , nodeCase))

}

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

Applications to other recursion schemes

Anamorphisms: constructing an instance of ADT from a value (the
opposite to catamorphisms)

Example: downfrom, f (n) = [n, n � 1, . . . , 1]
In ‘lens brackets’ notation:

n,m 7! if m is 0 then None else (m,m � 1)

Hylomorphisms: an anamorphism followed by a catamorphism
Example: factorial.

In ‘envelope brackets’ notation:

J(1, ⇤), downfromK

Paramorphisms: similar to catamorphisms, but have access to entire
substructures on which the recursive call is made.

Convenient for expressing factorial:

1, (n,m) 7! (1 + n) ⇤m

Zygomorphisms, futumorphisms, chronomorphisms, Elgot
(co)algebras ...10

10
Hinze, Wu, and Gibbons 2013.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

References I

[1] A. E. I. Brownlee, N. Burles, and J. Swan. “Search-Based Energy
Optimization of Some Ubiquitous Algorithms”. In: IEEE
Transactions on Emerging Topics in Computational Intelligence 1.3
(2017), pp. 188–201. issn: 2471-285X. doi:
10.1109/TETCI.2017.2699193.

[2] Zoltan A. Kocsis and Jerry Swan. Dependency Injection for
Programming by Optimization. 2017. url:
http://arxiv.org/abs/1707.04016.

[3] Zoltan A. Kocsis and Jerry Swan. “Genetic Programming + Proof
Search = Automatic Improvement”. In: Journal of Automated
Reasoning (2017). issn: 1573-0670. doi:
10.1007/s10817-017-9409-5.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

https://doi.org/10.1109/TETCI.2017.2699193
http://arxiv.org/abs/1707.04016
https://doi.org/10.1007/s10817-017-9409-5

References II

[4] Zoltan A. Kocsis, John H. Drake, Douglas Carson, and Jerry Swan.
“Automatic Improvement of Apache Spark Queries Using
Semantics-preserving Program Reduction”. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference
Companion. GECCO ’16 Companion. Denver, Colorado, USA:
ACM, 2016, pp. 1141–1146. isbn: 978-1-4503-4323-7. doi:
10.1145/2908961.2931692. url:
http://doi.acm.org/10.1145/2908961.2931692.

[5] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee,
Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen.
“Object-Oriented Genetic Improvement for Improved Energy
Consumption in Google Guava”. In: Search-Based Software
Engineering. Ed. by Márcio Barros and Yvan Labiche. Cham:
Springer International Publishing, 2015, pp. 255–261. isbn:
978-3-319-22183-0.

[6] R. Nilsson. ScalaCheck: The Definitive Guide. IT Pro. Artima
Press, 2014. isbn: 9780981531694.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

https://doi.org/10.1145/2908961.2931692
http://doi.acm.org/10.1145/2908961.2931692

References III

[7] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. “Unifying Structured
Recursion Schemes”. In: Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’13.
Boston, Massachusetts, USA: ACM, 2013, pp. 209–220. isbn:
978-1-4503-2326-0. doi: 10.1145/2500365.2500578. url:
http://doi.acm.org/10.1145/2500365.2500578.

[8] Sumit Gulwani. “Automating string processing in spreadsheets
using input-output examples”. In: Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011.
Ed. by Thomas Ball and Mooly Sagiv. ACM, 2011, pp. 317–330.
isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926423. url:
http://doi.acm.org/10.1145/1926385.1926423.

[9] Colin Runciman, Matthew Naylor, and Fredrik Lindblad.
“Smallcheck and lazy smallcheck: automatic exhaustive testing for
small values”. In: Haskell. ACM, 2008, pp. 37–48.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

https://doi.org/10.1145/2500365.2500578
http://doi.acm.org/10.1145/2500365.2500578
https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423

References IV

[10] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool
for random testing of Haskell programs”. In: ICFP. ACM, 2000,
pp. 268–279.

[11] Oliver Roux and Cyril Fonlupt. “Ant Programming: Or How to Use
Ants for Automatic Programming”. In: ANTS’2000 From Ant
Colonies to Artificial Ants: 2nd International Workshop on Ant
Algorithms. Ed. by Marco Dorigo. 2000.

[12] Richard Bird and Oege de Moor. Algebra of Programming. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997. isbn:
0-13-507245-X.

[13] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA: MIT
Press, 1992.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

References V

[14] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional
programming with bananas, lenses, envelopes and barbed wire”.
In: Functional Programming Languages and Computer
Architecture: 5th ACM Conference Cambridge, MA, USA, August
26–30, 1991 Proceedings. Ed. by John Hughes. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 124–144. isbn:
978-3-540-47599-6. doi: 10.1007/3540543961_7.

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire

	1/27
	1/27
	8/27

