
Scripting with Luerl



Luerl
Luerl is an implementation of standard Lua written in Erlang/OTP.

Lua is a powerful, efficient, lightweight, embeddable scripting language common in 
games, machine learning, IoT devices and scientific computing research.

It supports procedural programming, object-oriented programming, functional 
programming, data-driven programming, and data description.

https://github.com/rvirding/luerl https://luerl.org

https://github.com/rvirding/luerl
https://luerl.org


Lua ...



The Lua Language
Lua was born out of necessity, initially developed as a result of strict trade barriers 
instituted by the Brazilian government.

Created in 1993 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and 
Waldemar Celes at the Pontifical Catholic University of Rio de Janeiro, in Brazil.

Lua is explicitly designed as scripting language to be embedded into applications 
build on other languages.



The Lua Language
Originally influenced by Tcl (scripting, embedded), 
Modula, SNOBOL and AWK (associative arrays),
LISP with their single, data-structure mechanism (the list),
and Scheme; first class anonymous functions with lexical scope (closures).



The Lua Language
Lua is an embedded language: meaning that is not a stand-alone package, but a 
library that links to other applications to extend them.

The ability to be used as a library is what makes Lua an extension language. 
Lua can register new functions in the environment; such functions are 
implemented in C (or another language) this add features that cannot be written 
directly in Lua.



The Lua Language

These two views of Lua the extension language and as an extensible language 
correspond to two kinds of interaction between C and Lua.

In the first kind, C its the application language and Lua is the library.

In the second kind, Lua its the application language and C is the library.

Both of them use the same API to communicate with Lua, the so called C API.



The Lua Language
Lua programs are not interpreted directly from the source code, but are compiled 
into bytecode, which runs into the Lua virtual machine.

The compilation process is typically invisible and is performed during run-time.



Uses of Lua
- Widely used in some niches not just game development
- Embedded systems; TVs(Samsung), routers(Cisco), mobiles(Huawei), ...
- Scripting for applications; Wikipedia, Wireshark, Nmap, VLC Media Player
- Very popular in systems infrastructure; nginx, haproxy, asterisk, kamailio
- Web development; Sailor, OpenResty, Lapis, Turbo
- Image manipulation; Adobe Lightroom
- API Gateways; Kong
- Deep Learning; Torch



Erlang ...



The Erlang Language
Erlang is a concurrent, functional language which runs on its own scalable, 
distributed, fault-tolerant, soft real-time, highly available VM called the BEAM.



The BEAM ecosystem
Multilingual from the start, the Erlang ecosystem with all its languages is build for 
and runs on the BEAM VM, the Erlang language and the OTP framework.

Erlang, Elixir, LFE, Luerl, Erlog, Efene, Bragful, Alpaca, Joxa ...



The BEAM internal properties
- Lightweight, massive concurrency
- Asynchronous communication
- Process isolation
- Error handling
- Hot code replacement
- Support for introspection and monitoring

We rarely have to worry about this properties, except for receiving messages!



The BEAM external properties

- Immutable data
- Pattern matching
- Functional language
- Predefined set of data types
- Modules
- No global data

These are what we “see” directly in the BEAM ecosystem of languages.



Uses of Erlang
- Widely used in some niches it’s not just a “telecom language”
- Web development; Cowboy (99s)
- Communication systems; MongooseIM(Erlang Solutions), WhatsApp(FB), 

ejabberd (Process One), ...
- Operations and monitoring; WombatOAM (Erlang Solutions)
- Message brokers; RabbitMQ (Pivotal)
- Very popular in cluster databases; Riak (R.I.P Basho), SimpleDB (Amazon)



So, why Luerl ? ...



Well… Robert likes to implement languages



Luerl features
Luerl should allow you to fast switch between Lua and Erlang, introducing a new 
way to use very small bits of logic programmed in Lua, inside an Erlang 
application, which means that:

- Programs are written in at least two languages; a scripting and system 
language.

- The system language implements the hard parts of the application; 
algorithms, data structures, there is little change at this level.

- Scripting glues together the hard parts; this level is flexible, easy to change.



Millions of processes
Luerl presents an environment that allows you to effortlessly run millions of Lua 
processes concurrently and in parallel, levering the famed processes 
implementation of the BEAM VM. 



A note on coroutines
There are no coroutines in Luerl, this could seem counterintuitive coming from a 
solid Lua background, but they are not needed in the BEAM ecosystem, here we 
use processes; concurrent, lightweight asynchronous processes.



Uses of Luerl
Lua is used in various products build with Erlang and open-source projects around 
the world, including several games, API Gateways, and StarCraft AI bots.



The trade-offs
Lua is not good for:

- Concurrency and multi-core parallelism
- The standard library is not very large
- DIY approach to life (Do It Yourself)

Erlang is not good for:

- Heavy number crunching
- Global, shared, mutable state
- Scripting, yes, we know about escript but.. really?



Luerl: The goal
A proper implementation of the Lua language.

- It should look and behave the same as Lua
- It should include the standard libraries
- It should interface well with Erlang

Luerl is a complete reimplementation of the Lua language including a Luerl Erlang 
API that match the Lua C API available on standard Lua.



Luerl: The result
Luerl is a successful implementation of Lua in Erlang

- except goto, _ENV and coroutines

It, also has great interaction between Erlang and friends

- Easy for Erlang to call Lua and Lua to call Erlang
- Compatible with Erlang concurrency and error handling.



Luerl: The result
Luerl standard library implemented

- Functions
- Modules
- String manipulation
- Table mechanism
- Math functions
- Bitwise operators
- Very few I/O and OS facilities



Luerl: The result

- Extendable if required to call Lua from Erlang

- Straight-forward to call Erlang from Lua

- No C interface! - (Erlang application programming interface instead of the Lua C API.)



Luerl: The result - VM and compiler
A relative straight-forward VM

- Similar, but not the same, as the standard Lua one.

Compiler optimises the environment handling

- Separates purely local environment of blocks and functions from global env

Lots of “unnecessary” information compiled away

- Error messages are very basic, but no worries this is in the pipeline.



Luerl: The result - datatypes

Lua Luerl

nil Atom nil

true/false Atom true/false

strings strings binaries

numbers floats

tables #tables{} with arrays
for keys we have 1...n
and #dicts for the rest

functions #function{} or {function, Fun}



Luerl: The result - Lua state
The main difficulty of Luerl implementation was the need to implement Lua’s 
mutable global data with Erlang’s immutable local data.

We keep all Lua state in one data structure explicitly threaded through everything, 
this “threading of stuff” is what you typically do in Erlang anyway.

Robert implement Luerl’s own garbage collector on top of Erlang’s collector for 
Lua state.



Community
Luerl embrace both #LuaLang and #Erlang the two of them are simple, diverse 
and complementary communities and language ecosystems.

https://luerl.org

https://github.com/rvirding/luerl

https://github.com/rvirding/luerl/wiki

https://twitter.com/hashtag/LuaLang?src=hash
https://twitter.com/hashtag/Erlang?src=hash
https://luerl.org
https://github.com/rvirding/luerl


Thanks!

Barbara Chassoul
@chassoula
https://nonsense.ws

https://nonsense.ws

