elixir

@elixirlang / elixir-lang.org

GenStage & Flow

github.com/elixir-1lang/gen_stage

Prelude:
From eager,
to lazy,
to concurrent,
to distributed

Example problem:
word counting

“roses are red\n
violets are blue\n"

!

%1“are” => 2,
“blue” => 1,
“red” => 1,
“roses" => 1,
“violets" => 1}

File.read! ("source')

!

"roses are red\n
violets are blue\n"

File.read! ("source')
> String.split("\n")

!

["roses are red",
"violets are blue"]

File.read!("source')
String.split(“\n")
Enum. flat_map(&String.split/1)

!

[II rOseSII’ llarell’ llredll’
"violets", "are", "blue"]

File.read!("source™)
String.split(“\n")
Enum. flat_map(&String.split/1)
Enum. reduce(%{}, fn word, map
Map.update(map, word, 1, 1)

end)

%{"“are"” => 2,
“blue” => 1,
“red” => 1,
“roses" => 1,
“violets" => 1}

tager

Simple

Efficient for small collections
Inefficient for large collections with
multiple passes

File.read!(“really large file"')
1> String.split("\n')
'> Enum.flat_map(&String.split/1)

File.stream! ("source", :Lline)

!

#Stream<...>

File.stream! ("source", :line)
> Stream.flat_map(&String.split/1)

!

#Stream<...>

File.stream! ("source",)
Stream.flat_map(&String.split/1)
Enum. reduce(%{}, fn word, map

Map.update(map, word, 1, 1)

end)

%{“are” => 2,
“blue” => 1,
“red” => 1,
“roses" => 1,
“violets" => 1}

Lazy

Folds computations, goes item by item
Less memory usage at the cost of
computation

Allows us to work with large or
infinite collections

Concurrent

File.stream! ("source", :Lline)

v

#Stream<...>

File.stream! ("source™, :Lline)

> Flow.from_enumerable()

'> Flow.flat_map(&String.split/1)

> Flow.partition()

|> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

#F low<...>

File.stream! ("source”™, :Lline)

> Flow.from_enumerable()

> Flow.flat_map(&String.split/1)

> Flow.partition()

'> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

'> Enum.1nto(%{})
%1"“are” => 2,

“blue” => 1,
“red” = 1,
“roses" => 1,
“violets" => 1}

Flow

We give up ordering and process
locality for concurrency

Tools for working with bounded and
unbounded data

Flow

It is not magic! There is an overhead
when data flows through processes
Requires volume and/or cpu/io-bound
worR to see benefits

Flow stats

~1200 lines of code (LOC)
~1300 lines of documentation (LOD)

Topics

1200L0C: How is flow implemented?
1300L0D: How to reason about flows?

GenStage

GenStage

It is @ new behaviour

Exchanges data between stages
transparently with back-pressure
BreaRs into producers, consumers and
producer_consumers

GenStage

producer producer producer

producer consumer
consumer consumer consumer

GenStage: Demand-driven

Subscribes

Asks 10

Sends max 10
Producer Consumer

1. consumer subscribes to producer
2. consumer sends demand
3. producer sends events

GenStage: Demand-driven

GenStage: Demand-driven

It Is @ message contract
It pushes back-pressure to the boundary
GenStage is one impl of this contract

Counter Printer
(Producer) (Consumer)

o0

defmodule Producer do
use GenStage

def 1nit(counter) do
{:producer, counter}
end

def handle_demand(demand, counter) when demand > 0 do
events = Enum.to_list(counter..counter+demand-1)
{:noreply, events, counter + demand}
end
end

state demand handle_demand

0 10 A{:noreply, [0, 1, .., 9], 10}

10 5 {:noreply, [10, 11, 12, 13, 14], 15}

15 5 {:noreply, [15, 16, 17, 18, 191, 20}

defmodule Consumer do
use GenStage

def i1nit(:ok) do
{:consumer, :the state does not matter}
end

def handle_events(events, _from, state) do
Process.sleep(1000)
I0.1nspect(events)
{:noreply, [], state}
end
end

{:0k, counter} =
GenStage.start_link(Producer, 0)

{:0k, printer} =
GenStage.start_link(Consumer, :ok)

GenStage.sync_subscribe(printer, to: counter)

(wait 1 second)

[0, 1, 2, ..., 499] (500 events)

(wait 1 second)

[500, 501, 502, ..., 999] (500 events)

Subscribe options

max_demand: the maximum amount
of events to ask (default 1000)
min_demand: when reached, asR for
more events (default 500)

AR A N

max_demand: 10, min_demand: 0

the consumer asks for 10 items
the consumer receives 10 items
the consumer processes 10 items
the consumer asks for 10 more
the consumer waits

AR A N

max_demand: 10, min_demand: 5

the consumer asks for 10 items

the consumer receives 10 items

the consumer processes 5 of 10 items
the consumer asks for 5 more

the consumer processes the remaining 5

l HOME INSTALL GUIDES
‘ ll 5

Announcing GenStage

n f»".IlIli.*ilIli"L:I‘;l-;".'L"[“E

Today we are glad to announce the official release of GenStage. GenStage is a new Elixir behaviour for
exchanging events with back-pressure between Elixir processes. In the short-term, we expect
GenStage to replace the use cases for GenEvent as well as providing a composable abstraction for
consuming data from third-party systems.

In this blog post we will cover the background that led us to GenStage, some example use cases, and
what we are exploring for future releases. If instead you are looking for a quick reference, check the
project source code and access its docurmnentation.

Background

One of the original motivations for creating and designing Elixir was to introduce better abstractions

for working with collections. Not only that, we want to provide developers interested in manipulating
collections with a path to take their code from eager to lazy, to concurrent and then distributed.

Let’s discuss a simple but actual example: word counting. The idea of word counting is to receive one
file and count how many times each word appears in the document. Using the Enum module it could

LEARNING DOCS BLOG PACKAGES

News: Announcing GenStage

Search
oedICll...

ey

Internals
Releases

Announcements

AAAAAAAAAAAAA

#elixir-lang on freenode IRC
Elixir on Slack

Elixir Forum

elixir-talk mailing list

@elixirlang on Twitter

- AMMandisenn meumcsend i civawld

http://bit.ly/genstage

Topics

1200L0C: How is flow implemented?
Its core 1s a 80LOC stage
1300L0D: How to reason about flows?

“roses are red\n
violets are blue\n"

!

%1“are” => 2,
“blue” => 1,
“red” => 1,
“roses" => 1,
“violets" => 1}

File.stream! ("source™, :Lline)

> Flow.from_enumerable()

'> Flow.flat_map(&String.split/1)

> Flow.partition()

|> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

#F low<...>

File.stream! ("source”™, :Lline)

> Flow.from_enumerable()

> Flow.flat_map(&String.split/1)

> Flow.partition()

'> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

'> Enum.1nto(%{})
%1"“are” => 2,

“blue” => 1,
“red” = 1,
“roses" => 1,
“violets" => 1}

File.stream! ("source”™, :line)
> Flow.from_enumerable()

Producer

File.stream! ("source”™, :line)
> Flow.from_enumerable()
> Flow.flat_map(&String.split/1)

Producer

Stage 1 Stage 2

"roses are red" ®lE®'violets are blue

Stage 2

IIII].H II\)I-.kB | SII

File.stream! ("source”™, :line)
> Flow.from_enumerable()
> Flow.flat_map(&String.split/1)

Producer

Stage 1 Stage 2

File.stream! ("source', :Lline)

> Flow.from_enumerable()

> Flow.flat_map(&String.split/1)

'> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

Producer

Stage 1 Stage 2 Stage 3 Stage 4

OWF O O O

"roses are red" ®lE®'violets are blue

%1 "“are” => 1, %1 "“are” => 1,
“red” = 1, “blue” => 1,
“roses" => 1} “violets" => 1}

Producer

%1 “are” => 1, %1 “are” => 1,
“red” = 1, “blue” => 1,
“roses" => 1} “violets" => 1}

File.stream! ("source', :line)

> Flow.from_enumerable()

> Flow.flat_map(&String.split/1)

> Flow.partition()

> Flow.reduce(fn -> %{} end, fn word, map ->
Map.update(map, word, 1, & &1 + 1)

end)

Producer

9 E— e v

Stage A Stage B Stage (Stage D

O O O O

"roses are e 'violets are blue

Producer

Reducer A Reducer B Reducer (Reducer D

File.stream! ()
Flow. from enumerable()
Flow.flat_map(&String.split/1)
Flow.partition()

Flow. reduce(fn %{} end, fn word, map
Map.update(map, word, 1, 1)
end)

Enum. 1nto(%{})

reduce/3 collects all data into maps
when it is done, the maps are streamed
into/2 collects the state into a map

Postlude:
From eager,
to lazy,
to concurrent,

to distributed

Enum (eager)

File.read!()
String.split()
Enum. flat_map(&String.split/1)
Enum. reduce(%{}, fn word, map
Map.update(map, word, 1, 1)
end)

Stream (lazy)

File.stream! ()
Stream. flat_map(Strlng split/1)
Enum. reduce(%{}, fn word, map
Map.update(map, word, 1, 1)
end)

Flow (concurrent)

File.stream! ()
Flow. from enumerable()
Flow.flat_map(&String.split/1)
Flow.partition()
Flow.reduce(%{}, fn word, map
Map.update(map, word, 1, 1)
end)
Enum.1nto(%{})

Flow features

- Provides map and reduce operations,
partitions, flow merge, flow join

. Configurable batch size (max & min demand)
- Data windowing with triggers and
watermarks

Distributed?

Flow APl has feature parity with
frameworks like Apache Spark
However, there is no distribution nor
execution guarantees

“small inputs are common in practice: 40-80% of
(loudera customers MapReduce jobs and 70% of
jobs in a Facebook trace have < 1GB of input”

CHEN, Y., ALSPAUGH, S., AND KATZ, R.
Interactive analytical processing in big data systems:
a cross—industry study of MapReduce workloads

“For between 40-80% of the jobs submitted
to MapReduce systems, youd be better off
just running them on a single machine”

GOG, I., SCHWARZKOPF, M., CROOKS, N.,
GROSVENOR, M. P., CLEMENT, A., AND HAND, S.
Musketeer: all for one, one for all 1n data

processing systems.

Distributed?

Single machine matters - try it!

The gap between concurrent and
distributed in Elixir is small

Durability concerns will be tackled next

Inspirations

- ARRa Streams - back pressure contract
- Apache Spark - map reduce API

- Apache Beam - windowing model

- Microsoft Naiad - stage notifications

Built and designed at

p\otqformotec

sulting and software engin

elixir

@elixirlang / elixir-lang.org

