
@elixirlang / elixir-lang.org

GenStage & Flow
github.com/elixir-lang/gen_stage

Prelude:
From eager,  

to lazy, 
to concurrent, 
to distributed

Example problem:
word counting

“roses are red\n
violets are blue\n"

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

Eager

File.read!("source")

"roses are red\n
 violets are blue\n"

File.read!("source")
|> String.split("\n")

["roses are red",
 "violets are blue"]

File.read!("source")
|> String.split("\n")
|> Enum.flat_map(&String.split/1)

["roses", “are", “red",
 "violets", "are", "blue"]

File.read!("source")
|> String.split("\n")
|> Enum.flat_map(&String.split/1)
|> Enum.reduce(%{}, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

Eager

• Simple
• Efficient for small collections
• Inefficient for large collections with

multiple passes

File.read!(“really large file")
|> String.split("\n")
|> Enum.flat_map(&String.split/1)

Lazy

File.stream!("source", :line)

#Stream<...>

File.stream!("source", :line)
|> Stream.flat_map(&String.split/1)

#Stream<...>

File.stream!("source", :line)
|> Stream.flat_map(&String.split/1)
|> Enum.reduce(%{}, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

Lazy
• Folds computations, goes item by item
• Less memory usage at the cost of

computation
• Allows us to work with large or

infinite collections

Concurrent

#Stream<...>

File.stream!("source", :line)

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

#Flow<...>

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)
|> Enum.into(%{})

Flow

• We give up ordering and process
locality for concurrency

• Tools for working with bounded and
unbounded data

Flow

• It is not magic! There is an overhead
when data flows through processes

• Requires volume and/or cpu/io-bound
work to see benefits

Flow stats

• ~1200 lines of code (LOC)
• ~1300 lines of documentation (LOD)

Topics

• 1200LOC: How is flow implemented?
• 1300LOD: How to reason about flows?

GenStage

GenStage
• It is a new behaviour
• Exchanges data between stages

transparently with back-pressure
• Breaks into producers, consumers and

producer_consumers

GenStage

producer
consumerproducer producer

consumer
producer
consumer consumer

GenStage: Demand-driven

BA

Producer Consumer

1. consumer subscribes to producer
2. consumer sends demand
3. producer sends events

Asks 10

Sends max 10

Subscribes

B CA
Asks 10Asks 10

Sends max 10 Sends max 10

GenStage: Demand-driven

• It is a message contract
• It pushes back-pressure to the boundary
• GenStage is one impl of this contract

GenStage: Demand-driven

GenStage
example

BA

Printer
(Consumer)

Counter
(Producer)

defmodule Producer do
 use GenStage

 def init(counter) do
 {:producer, counter}
 end

 def handle_demand(demand, counter) when demand > 0 do
 events = Enum.to_list(counter..counter+demand-1)
 {:noreply, events, counter + demand}
 end
end

state demand handle_demand

0 10 {:noreply, [0, 1, …, 9], 10}

10 5 {:noreply, [10, 11, 12, 13, 14], 15}

15 5 {:noreply, [15, 16, 17, 18, 19], 20}

defmodule Consumer do
 use GenStage

 def init(:ok) do
 {:consumer, :the_state_does_not_matter}
 end

 def handle_events(events, _from, state) do
 Process.sleep(1000)
 IO.inspect(events)
 {:noreply, [], state}
 end
end

{:ok, counter} =
 GenStage.start_link(Producer, 0)

{:ok, printer} =
 GenStage.start_link(Consumer, :ok)

GenStage.sync_subscribe(printer, to: counter)

(wait 1 second)
[0, 1, 2, ..., 499] (500 events)
(wait 1 second)
[500, 501, 502, ..., 999] (500 events)

Subscribe options

• max_demand: the maximum amount
of events to ask (default 1000)

• min_demand: when reached, ask for
more events (default 500)

max_demand: 10, min_demand: 0

1. the consumer asks for 10 items
2. the consumer receives 10 items
3. the consumer processes 10 items
4. the consumer asks for 10 more
5. the consumer waits

max_demand: 10, min_demand: 5

1. the consumer asks for 10 items
2. the consumer receives 10 items
3. the consumer processes 5 of 10 items
4. the consumer asks for 5 more
5. the consumer processes the remaining 5

http://bit.ly/genstage

Topics

• 1200LOC: How is flow implemented?
• Its core is a 80LOC stage

• 1300LOD: How to reason about flows?

Flow

“roses are red\n
violets are blue\n"

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

#Flow<...>

%{“are” => 2,
 “blue” => 1,
 “red” => 1,
 “roses" => 1,
 “violets" => 1}

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)
|> Enum.into(%{})

File.stream!("source", :line)
|> Flow.from_enumerable()

Producer

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)

Producer

Stage 1 Stage 2 Stage 3 Stage 4

"blue"

Producer

Stage 1 Stage 2 Stage 3 Stage 4

"roses are red"

"roses""are""red"

"violets are blue"

"violets""are"

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)

Producer

Stage 1 Stage 2 Stage 3 Stage 4

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

Producer

Stage 1 Stage 2 Stage 3 Stage 4

Producer

Stage 1 Stage 2 Stage 3 Stage 4

"roses are red"

%{“are” => 1,
 “red” => 1,
 “roses" => 1}

"violets are blue"

%{“are” => 1,
 “blue” => 1,
 “violets" => 1}

Producer

Stage 1 Stage 2 Stage 3 Stage 4

%{“are” => 1,
 “red” => 1,
 “roses" => 1}

%{“are” => 1,
 “blue” => 1,
 “violets" => 1}

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

Producer

Stage 1 Stage 2 Stage 3 Stage 4

Stage A Stage B Stage C Stage D

Stage CStage A Stage B Stage D

Stage 1

"roses""are"
Stage 4

%{“are” => 1}

"red"

Producer"roses are red"

%{“roses” => 1}

"violets are blue"

%{“are” => 1,
 “red” => 1}

Stage 2 Stage 3

%{“are” => 2,
 “red” => 1}

"are"

Mapper 4

Reducer C

Producer

Reducer A Reducer B Reducer D

Mapper 1 Mapper 2 Mapper 3

File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(fn -> %{} end, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)
|> Enum.into(%{})

• reduce/3 collects all data into maps
• when it is done, the maps are streamed
• into/2 collects the state into a map

Postlude:
From eager,  

to lazy, 
to concurrent, 
to distributed

Enum (eager)
File.read!("source")
|> String.split("\n")
|> Enum.flat_map(&String.split/1)
|> Enum.reduce(%{}, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

Stream (lazy)
File.stream!("source", :line)
|> Stream.flat_map(&String.split/1)
|> Enum.reduce(%{}, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)

Flow (concurrent)
File.stream!("source", :line)
|> Flow.from_enumerable()
|> Flow.flat_map(&String.split/1)
|> Flow.partition()
|> Flow.reduce(%{}, fn word, map ->
 Map.update(map, word, 1, & &1 + 1)
end)
|> Enum.into(%{})

Flow features
• Provides map and reduce operations,

partitions, flow merge, flow join
• Configurable batch size (max & min demand)
• Data windowing with triggers and

watermarks

Distributed?

• Flow API has feature parity with
frameworks like Apache Spark

• However, there is no distribution nor
execution guarantees

CHEN, Y., ALSPAUGH, S., AND KATZ, R.
Interactive analytical processing in big data systems:

a cross-industry study of MapReduce workloads

“small inputs are common in practice: 40–80% of
Cloudera customers’ MapReduce jobs and 70% of

jobs in a Facebook trace have ≤ 1GB of input”

GOG, I., SCHWARZKOPF, M., CROOKS, N.,
GROSVENOR, M. P., CLEMENT, A., AND HAND, S.
Musketeer: all for one, one for all in data

processing systems.

“For between 40-80% of the jobs submitted
to MapReduce systems, you’d be better off

just running them on a single machine”

Distributed?

• Single machine matters - try it!
• The gap between concurrent and

distributed in Elixir is small
• Durability concerns will be tackled next

Inspirations

• Akka Streams - back pressure contract
• Apache Spark - map reduce API
• Apache Beam - windowing model
• Microsoft Naiad - stage notifications

consulting and software engineering

Built and designed at

@elixirlang / elixir-lang.org

