
Smart Sheets 
A new breed of spreadsheet computing

Lakebolt Research

A Brief History of Spreadsheets

Pre-cambrian
▪ LANPAR
▪ Autoplan

Cambrian explosion
▪ Visicalc
▪ SuperCalc
▪ Quattro Pro
▪ Lotus 1-2-3
▪ MS-Excel

The great extinction

Cloud era
▪ Microsoft Excel 360
▪ Google Spreadsheets
▪ ZOHO

Spreadsheets

Spreadsheets are a very popular productivity tool

As stated by Simon Peyton Jones, the language of MS Excel formulas is the
most popular programming language in the world.

Indeed, spreadsheets support a functional (albeit limited) programming
paradigm, wrapped in an intuitive visual computing environment.

Why are they so successful?
▪ Low “barrier to entry”
▪ Visual and intuitive
▪ Functional
▪ Reactive

Current State of the Art

Spreadsheets are credited as the killer app that helped spur the PC era

Decades later, they are still prevalent, on the desktop as well as the cloud
▪ MS-Excel
▪ Google Spreadsheets
▪ Zoho

MS-Excel is the de-facto “reference implementation”

The cloud revolution could have been an opportunity to disrupt spreadsheets

There is a widespread acceptance of basic design assumptions

Everyone tries to be “just like MS-Excel”

But, is the underlying design a good one?

▪ WARNING: repetitive (boring) slides ahead!
▪ Quick survey of rants about spreadsheets from the Web

Issues:  
from the Web

Source:
Problem 1: Difficult inspection / lack of traceability: In complex spreadsheets it is very hard to
keep the overview concerning the formulas. Auditing the correctness of a spreadsheet can
become a cumbersome task, especially in documents with several sheets making cross-
references all over the place.
Problem 2: Inflexibility: It is hard to rearrange the solution when it turns out that the trial-and-
error development process went into the wrong direction and needs to be corrected.
Problem 3: Limited reuse: Applying a solution to slightly different source data sets is difficult. A
spreadsheet created for one purpose can in most cases not be reused for even a slightly
different problem. It is not possible to create libraries with subsets of a solution and rearrange or
recombine those easily for application to a new problem.
Problem 4: Limited scalability: Processing very large amounts of data in a spreadsheet causes
problems as the complete source data has to be present at once – there is no simple way for
“streaming” large amounts of data through the spreadsheet solution.
Problem 5: Deployment: It is not easily possible to turn a spreadsheet into a standalone solution
that can be deployed as a distributable product or be published as a web site.

Issues:  
from the Web

Source:
Susceptibility to trivial manual errors
▪ Due to the fundamental structure of spreadsheets, a slight change in the formula or value in

any of their inhabited cells may already affect their overall output: e.g. accidental copy-paste,
erroneous range selection, incorrect data input or unintentional deletion of a character, cell,
range, column, or row

Possibility of the user working on the wrong version
▪ Since the most common reports are usually generated on a monthly basis, users tend to

store them using file/directory names variations. A user can accidentally work on the wrong
version.

Prone to inconsistent company-wide reporting
Often defenseless against unauthorized access
Highly vulnerable to fraud
Spreadsheet risk mitigation solutions may not suffice
▪ No clear ownership of risk management responsibilities

To get rid of spreadsheet risks, you’ll have to get rid of spreadsheets altogether

Issues:  
from the Web

Source:
1. Vulnerable to fraud
2. Susceptible to trivial human errors
3. Difficult to troubleshoot or test
4. Obstructive to regulatory compliance
5. Unfit for agile business practices
6. Not designed for collaborative work
7. Hard to consolidate
8. Incapable of supporting quick decision making
9. Unsuited for business continuity
10. Scales poorly

Issues:  
from the Web

Source:
1) Spreadsheet data can be erroneous when entered or changed. Now, you can argue that this is true of all
applications that involve data entry, but spreadsheets are particularly prone to this problem because the inevitable
errors are hard to identify and trace. Controlling who and when changes can be made is very problematic as well.
2) Spreadsheet consolidations and aggregations are not for the weak of heart. Let’s consider a marketing budget
developed with a spreadsheet where marketing budget and spend by marketing communications, lead generation,
event marketing and web marketing are broken out into tabs and allocated to five lines of business or geographies.
That’s 20 individual spreadsheet matrices that must be aggregated every time a change is made or a current report
requested. One change to any of the cells requires re-aggregation of all the matrices. Yes, you can program, emphasis
on the word program, macros to automate the process, but honestly, it hurts just thinking about it.
3) Spreadsheets are not scalable. I have seen marketing budgets that encompass hundreds of marketing programs,
multiple lines of business or geographies across multiple product lines. If you are tracking and rolling up all marketing
spend transactions, you can easily get into tens of thousands of lines of spreadsheet rows making reporting and
consolidations slow and difficult.
4) Spreadsheets are in reality not that flexible. Using the same scenario cited in the consolidations and scalability
examples described above, imagine the impact of a decision to add a column, track a new element, add a new
category of spending or a new line of business. The impact ripples throughout your spreadsheet based marketing
budget. Also, watch out for data entry errors when these changes happen too!!!
5) Spreadsheets are problematic to inspect and audit. We’ve all seen it. Your spreadsheet doesn’t cross foot or total
up to what’s in the submitted budget or spending report. Consider a budget that was fine on Monday but is now not
footing on Tuesday. Who changed it and where was the change made. What’s your audit trail?

Issues:  
from the Web

Let’s take different perspectives

Programming language design perspective:

Data Representation
▪ Which objects can be created?
▪ Which ones can be named?
▪ What kind of type system is implied?
▪ How can users combine existing constructs?

Functional abstraction and composition
▪ How can users define and combine new functions?

UI software design perspective:
▪ How can users present their model?
▪ How much control they have over the layout?
▪ How easy is to adapt to model growth and changes?

Conceptual Simplicity
Expressive Power
Orthogonality, Composability, …

P1:  
overly simplistic state modeling

Current Paradigm
▪ State modeled as a set of named worksheets
▪ Each worksheet is a 2D grid of cells
▪ Cells contain formulas or values (a largely artificial distinction)
▪ Cells and ranges are designated by coordinates
▪ Unitype type system: every cell is a variant

Naming of cells (and ranges) is a difficult matter

Resulting nightmares
▪ A1-soup … programming by coordinates
▪ Hard to read, understand, and validate
▪ Easy to break

P2:  
lack of functional abstraction

Only first order functions are supported
▪ As a result, functions like sumif, countif … resort to hacks
▪ What if I want an averageif? …
▪ oops, guess what, they added it!
▪ which, of course, kind of proves the point!

Functions are predefined
▪ can create new ones only via VBA, XLL, …
▪ result: excessive reliance on copy and paste

P3:  
model – view entanglement

Worksheets have dual personality
▪ They are the single data modeling construct …

▪ … and the main mechanism to define named variables
▪ Most users feel it’s overkill to define a worksheet per variable

▪ However: Worksheets ⬄ Tabbed Panels
▪ … and tabbed panels are the primary visualization mechanism!

Organizing calculations is hard
▪ Typical scenario: moving intermediate calculations out of the way
▪ Best (modular) solution is to move them to separate worksheets
▪ Sure, you can also hide rows and/or columns …

▪ … but why should you work so hard to achieve this decluttering goal?

Typical nightmare:
▪ Rearranging the layout to make space for additional calculations
▪ Making sure that different sheets share basic parameters
▪ ... and visualizing said parameters in different sheets

Partial Exceptions: Numbers

https://en.wikipedia.org/wiki/File:NumbersIcon.png

Partial Exceptions: Javelin

Arguably Javelin could have set the standard for the future of spreadsheets, but failed for many
reasons … including bad luck!

“A complex model can be dissected and understood by others who had no role in its creation,
and this remains unique even today.” [Wikipedia]

Partial Exceptions: Lotus Improv

Problems: summary

Deficient data modeling constructs
▪ All models must be represented as a set of 2D grids …
▪ … with variables squeezed in a sea of (usually nameless) cells
▪ All variables (cells) are of variant type

Lack of functional abstraction
▪ Can’t define new functions to abstract repetitive formulas

▪ … except by going outside of the pure spreadsheet realm
▪ No higher order functions

Entanglement of model and presentation
▪ Sharing parameters across worksheets is error prone
▪ Rearranging sheet layouts is a frequent cause of bugs
▪ Organizing calculations is unnecessarily hard

Other issues
▪ Lack of support for stateful computations

▪ Wait … What? This is Lambda Daλs … This is Functional Programming Sparta!

Problems => Reactions => Symptoms

Coping mechanisms:
▪ copy-and-paste / cut-and-paste
▪ naming of cells and ranges
▪ multiple worksheets
▪ Macros and VBA

Consequences:
▪ Spreadsheets are error prone
▪ Hard to inspect and validate
▪ Easy to break
▪ Not that flexible
▪ Not powerful enough for serious computing
▪ … see previous laundry list of issues

Smart Sheets Manifesto

Spreadsheets must
▪ Support richer data structures
▪ orthogonal data composition
▪ product types, sum types, …
▪ static data typing (possibly with “optionality” via variant)

▪ Provide unfettered functional abstraction
▪ functional composition: ability to define new functions combining existing ones
▪ higher order functions: functions can be passed as arguments

▪ Separate model from presentation
▪ allows for multiple views of the computation model

▪ Allow model sharing

Let’s aim higher
▪ Why try to be “just like Excel” …
▪ … when we can be better than Excel?

A Natural Approach:  
Build a Smart Sheet env over a good language

Provide a visual interactive environment for a functional language, like
Haskell
▪ A lazy functional programming language works best
▪ But an eager language works too … with some tricks

Definitely, the most elegant, sound, … etc. approach

But what about widespread adoption?
▪ Spreadsheets do serve a purpose for non-programmers
▪ “I can’t Haskell today … I haz the dumbs”

▪ The creator of Elm appears to think along similar lines
▪ “Let’s be mainstream!”
▪ “One factor is that we make things artificially hard to learn, sometimes with a seemingly

pathological glee.”
▪ He is not the only one who says things like this …

ZenSheet

A different approach:
▪ Push the envelope generalizing spreadsheets
▪ Exploit unifying principles
▪ Define transformations from the “old way” to the “new way”

Downside: with this approach inevitably leads to a programming
language and environment that exhibits “the good parts” and “the bad
parts”, however …

Upside: (operating hypothesis)
▪ Result amenable to a wide spectrum of users
▪ Allows for a smooth learning curve:
▪ Beginners => Intermediate => Advanced

▪ Assisted automated conversion from spreadsheets to smart sheets

ZenSheet

Technical challenges:
▪ Worksheet context:
▪ W!C8 :- A8 * B8;
▪ W!F9 :- Conv!A4 * A9;

▪ i.e.:
▪ W[4, 8] :- W[1, 8] * W[2, 8];
▪ W[6, 9] :- Conv[1,4] * W[1, 9];

▪ Which (clearly) are both horrible ways to express:
▪ position[8].value :- position[8].price * position [8].qty;
▪ vehicle[9].kph :- conv.m2k * vehicle[9].mph;

▪ Or, better :
▪ position.value :- position.price * position.qty;
▪ vehicle.kph :- conv.m2k * vehicle.mph;

ZenSheet’s XXI Century Type System

Basic Types
▪ boolean, integer, floating point, string

N-Dimensional Arrays

Product types
▪ with unnamed (tuples) and named (structs) components

Sum types (TBI)
▪ Pattern matching rules

Functions as first class citizens

Gradual typing

Lazy variables

… and a bit more

Type System Rules (Theorems)  
two examples:

Let
▪ type(A) = array[,] T
▪ type(i) = int
▪ type(j) = int
And
▪ 0 <= i < dim(A)[0]
▪ 0 <= j < dim(A)[1]
Then
▪ type(A[i,j]) = T

Unifying result: “A worksheet is a 2-dimensional array of lazy variants”

Let
▪ type(p) = struct { T0; T1; }
And
▪ 0 <= i < 2
Then
▪ type(p[0]) = T0
▪ type(p[1]) = T1
▪ type(p[i]) = var

Functional Abstraction

It should be possible to
▪ Assign functions to variables
▪ Pass functions as arguments to other functions
▪ Return functions as results

Commonly used higher order functions (built-in)
▪ filter
▪ fmap
▪ fold

Model – View Separation

… enough! …

this is better illustrated via show and tell

It’s light demo time!

Warnings:
this is a work in progress

crashes may occur
The syntax is tentative

Some semantic aspects are still experimental
Suggestions are welcome: really!

ZenSheet Studio Demonstration

Conclusions

A computation model must stand on its own, entirely separated from its
presentation

An orthogonal and robust type system promotes understanding and increases
users’ ability to maintain correctness

Functional abstraction is a must
▪ And not just because this is Lambda Daλs!

Presentation is a pillar of usability
▪ The visual, intuitive, ease of use of spreadsheets should not, and need not, be lost as a

consequence of supporting functional abstraction and a richer type system.
▪ The pre-paid learning cost need not be thrown out

Let’s make functional programming popular by making it more accessible

The ZenSheet Team

By Universidad Simón Bolívar - http://usb.ve, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=24245670

Questions … maybe answers too

By Kamizer - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=18437040

