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Motivation

• Parallel	patterns	are	great
• BUT	we	need	to	choose	the	best	implementation
• For	a	specific	(heterogeneous)	parallel	architecture

• We	need	a	way	to	reason	about	parallel	structure
ü Correctness	of	transformations	(done! ICFP2016)
q Reasoning	about	performance	(in	progress)
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Example	Skeleton:	Parallel	Task	Farms

§ Task	Farms	use	a	fixed	number	of	workers	(farm	n f)
§ Each	worker	applies	the	same	operation	(f)
§ f is	applied	to	each	of	the	inputs	in	a	stream.
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Example	Skeleton:	Parallel	Pipeline

§ Parallel	pipelines	compose	two	operations	(f ||	g)	
§ over	the	elements	of	an	input	stream
§ f and g are	run	in	parallel
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Example:	Parallel	Image	Merge

Image	merge (im)		composes mark and	merge	

im : List (Img, Img) -> List Img
im = map (merge ∘ mark) 

There	are	many	alternative	parallel	implementations
- even	just	using	farms	(farm)	and	pipelines	(||)

im1 = farm n (fun (merge ∘ mark))
im2 = farm n (fun mark) || farm m (fun merge)
im3 = farm n (fun mark) || fun merge
...



So,	why	types?
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§ According	to	the	types	community:
§ Soundness:	“Well-typed	programs	cannot	go	wrong”
§ Documentation:	“Type	signatures	provide	valuable	docs.”

§ The	benefits	we	are	really	interested	in:
§ Soundness:	

§ “Well-typed	programs	can	be	parallelised as	described	by	the	types”

§ Documentation:	
§ “Type-level	parallel	structures	clearly	separate	structure	&	functionality”

§ Reusing	well-understood	techniques.	
§ E.g.	algorithms	for	type	unification	and	inference.	



Selecting	an	Implementation

Decorate	the	function	type	with	IM(n,m)

im : IM(n,m) ~ List (Img, Img) -> List Img
im = map (merge ∘ mark)

IM(n,m) = FARM n (FUN A) || FARM m (FUN A)

The	type	system	now	automatically	selects

im2 = farm n (fun mark) || farm m (fun merge)

We	can	guarantee that	this	is	functionally	equivalent	to	im



Introducing/Transforming	Parallel	Patterns

Original	program	
Structure Target	parallel	structure	

Sequential	normalised
structure

Sequential	normalised
structure

?



How	do	we	decide	semantic	
equivalences?

§ We	can	use	the	laws	and	properties	of	hylomorphisms!

§ Hylomorphisms are	a	generalisation of	a	divide	and	conquer.

§ “h”	splits	the	input	into	a	structure	“F”,	then	recursive	calls	are	
mapped	in	structure	“F”,	the	results		are	combined	by	“g”.

§ Algorithmic	skeletons	can	be	described	as	instances	of	
hylomorphisms

hyloF g h = f
where f = g ∘ F f ∘ h



Hylomorphism Example
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type T A = Empty | (A, List A, List A)

quicksort : List A -> List A
quicksort = hyloT merge split

merge : T A  -> List A
merge = …

split : List A -> T A
split = …



Introducing	Parallelism

We	start	with	a	streaming	sequential	version

To	create	a	parallel	divide-and-conquer	version,	change	the	type	again!

quicksort : List (List A) -> List (List A)
quicksort = mapList (hyloT merge split)

quicksort : PARL (DCn,T A A) ~
List (List A) -> List (List A)

quicksort : PARL (FARM n _ || _)~
List (List A) -> List (List A)

To	create	a	task	farm	and	pipeline version,	just	change	the	type!



Base	Semantics

§ Defined	using	well-known	recursion	schemes:
§ map (replication,	mapF)
§ fold (“catamorphism”,	cataF)
§ unfold (“anamorphism”,	anaF)

§ plus	sequential	composition,	∘

S⟦p : T A -> T B⟧ : ⟦A -> B⟧
S⟦funT f⟧ = env(f)
S⟦p1 || p2⟧ = S⟦p2⟧ ∘ S⟦p1⟧
S⟦farm n p⟧ = S⟦p⟧
S⟦dcn,T,F f g⟧ = cataF (env(f)) ∘ anaF (env(g))



Deciding	Semantic	Equivalences

§ Equivalence	of	parallel	programs	is	reduced	to	equivalence	of	
recursion	schemes.

Structured	parallel	prog. Structured	parallel	prog.

Sequential	equivalent Sequential	equivalent

≡

≡
parallelism	erasure parallelism	erasure



Recursion	Schemes	are	Hylomorphisms!



Inferring	Parallel	Structures

We	can	leave	holes	in	the	types

IM(n,m) = _ || FARM m _

Type	unification replaces	_ with	any	suitable	parallel	
structure

IM(n,m) = min cost (_ || FARM m _)

Type	unification	replaces	_ with	the	parallel	structure	
that	minimises the	cost	model!



Example:	Cost	Model	for	Task	Farms

This	cost	depends	on	
the	number	of	
contending	threads



Predicting	Parallel	Execution	Costs

Matrix	multiplication,
NxN matrices
24-core	AMD	Opteron



Predicting	Parallel	Execution	Costs

Image	Convolution
24-core	AMD	Opteron



Alternative	Parallel	Structures

Image	Convolution
24-core	AMD	Opteron



Alternative	Parallel	Structures

Image	Convolution
64-core	Intel	Xeon



Conclusions

• Deriving	costs	of	parallel	structures	from	an	operational	semantics	is	
very	powerful:
§ Automatically	derive	a	cost	equation	from	an	“implementation”
§ Compile-time	information	about	run-time	behaviour based	on	a	

simple	and	easy	to	understand	model.
§ When	combined	with	our	previous	work	(ICFP	2016),	we	can	

automatically	rewrite	programs	to	minimize	costs

• Our	cost	model	accurately	predicts	lower	bounds	on	speedups

• We	can	choose	between	alternative	parallel	implementations
• different	patterns
• CPU/GPU,	manycore/multicore
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Future	Work

• Other	patterns,	e.g.	stencil	and	bulk	synchronous	parallelism

• More	general	recursion	patterns:
• e.g.	adjoint folds	or	conjugate	hylomorphisms (Hinze)

• Apply	to	real	languages	(e.g.	Haskell,	Erlang)
• Build	a	full	implementation
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Type	System

• σ ~ A -> B is	an	alternative	notation	for	


