

Automatically Deriving Cost Models for Structured Parallel Programs using Types and Hylomorphisms

David Castro, Kevin Hammond and Susmit Sarkar

University of St Andrews, UK

- T: @rephrase_eu, @khstandrews
- E: kevin@kevinhammond.net
- W: http://www.rephrase-ict.eu http://www.paraformance.com

Motivation

- Parallel patterns are great
 - BUT we need to choose the best implementation
 - For a specific (heterogeneous) parallel architecture
- We need a way to reason about parallel structure
 - ✓ Correctness of transformations (done! ICFP2016)
 - Reasoning about performance (in progress)

Example Skeleton: Parallel Task Farms

- Task Farms use a fixed number of workers (farm n f)
 - Each worker applies the same operation (f)
 - f is applied to each of the inputs in a stream.

Example Skeleton: Parallel Pipeline

- Parallel pipelines compose two operations (f | | g)
 - over the elements of an input stream
 - f and g are run in parallel

Image merge (im) composes mark and merge

im : List (Img, Img) -> List Img
im = map (merge ° mark)

There are many alternative parallel implementations - **even just** using farms (farm) and pipelines (||)

```
im_1 = farm n (fun (merge \circ mark))

im_2 = farm n (fun mark) || farm m (fun merge)

im_3 = farm n (fun mark) || fun merge

...
```


So, why types?

- According to the types community:
 - Soundness: "Well-typed programs cannot go wrong"
 - Documentation: "Type signatures provide valuable docs."
- The benefits we are really interested in:
 - Soundness:
 - "Well-typed programs can be parallelised as described by the types"
 - Documentation:
 - "Type-level parallel structures clearly separate structure & functionality"
 - Reusing well-understood techniques.
 - E.g. algorithms for type unification and inference.

Decorate the function type with IM(n,m)

im : IM(n,m) ~ List (Img, Img) -> List Img
im = map (merge ° mark)

IM(n,m) = FARM n (FUN A) || FARM m (FUN A)

The type system now automatically selects

 $im_2 = farm n (fun mark) || farm m (fun merge)$

We can guarantee that this is functionally equivalent to im

How do we decide semantic equivalences?

- We can use the laws and properties of *hylomorphisms*!
- Hylomorphisms are a generalisation of a divide and conquer.

```
 \frac{hylo_F}{where} g h = f 
 where f = g \circ F f \circ h
```

- "h" splits the input into a structure "F", then recursive calls are mapped in structure "F", the results are combined by "g".
- Algorithmic skeletons can be described as instances of hylomorphisms


```
type T A = Empty | (A, List A, List A)
quicksort : List A -> List A
quicksort = hylo_T merge split
merge : TA \rightarrow List A
merge = \dots
split : List A \rightarrow T A
split = \dots
```


We start with a streaming sequential version

quicksort : List (List A) -> List (List A)
quicksort = map_{List} (hylo_T merge split)

To create a task farm and pipeline version, just change the type!

quicksort : PAR_L (FARM n |)~ List (List A) -> List (List A)

To create a parallel divide-and-conquer version, change the type again!

quicksort : $PAR_L (DC_{n,T} A A) \sim$ List (List A) -> List (List A)

Base Semantics

Defined using well-known recursion schemes:

- map (replication, map_F)
- fold ("catamorphism", cata_F)
- unfold ("anamorphism", ana_F)
- plus sequential composition, °

```
\begin{split} S[\![p:TA \to TB]\!] : [\![A \to B]\!] \\ S[\![fun_T f]\!] &= env(f) \\ S[\![p_1 \parallel p_2]\!] &= S[\![p_2]\!] \circ S[\![p_1]\!] \\ S[\![farm n p]\!] &= S[\![p]\!] \\ S[\![dc_{n,T,F} fg]\!] &= cata_F (env(f)) \circ ana_F (env(g)) \end{split}
```

```
 \begin{bmatrix} p & : & T A \to T B \end{bmatrix} & : & \begin{bmatrix} T A \to T B \end{bmatrix} \\ \begin{bmatrix} p \end{bmatrix} & & = & map_T \mathcal{S} \llbracket p \end{bmatrix}
```

Deciding Semantic Equivalences

Equivalence of parallel programs is reduced to equivalence of recursion schemes.

Recursion Schemes are Hylomorphisms!

$$T A = \mu(F A)$$

$$map_T f = hylo_{FA} (in_{FB} \circ (F f id)) out_{FA},$$
where $A = dom(f)$ and $B = codom(f)$

$$cata_F f = hylo_F f out_F$$

$$ana_F f = hylo_F in_F f$$

We can leave holes in the types

 $IM(n,m) = \| FARM m \|$

Type unification replaces _ with any suitable parallel structure

 $IM(n,m) = \min cost (\parallel FARM m)$

Type unification replaces _ with the parallel structure that *minimises* the cost model!

If \mathcal{P} produces p number of outputs, then the task farm produces $n \times p$ number of outputs, so the resulting cost needs to be divided by $n \times p/p$, or n:

$$\mathcal{T} + \mathcal{T}_{dequeue}(Q_0) + \mathcal{T}_{enqueue}(Q_1)$$

Predicting Parallel Execution Costs

Matrix multiplication, NxN matrices 24-core AMD Opteron

Predicting Parallel Execution Costs

Image Convolution 24-core AMD Opteron

Alternative Parallel Structures

Image Convolution 24-core AMD Opteron

Alternative Parallel Structures

Speedup

Image Convolution 64-core Intel Xeon

Conclusions

- Deriving costs of parallel structures from an operational semantics is very powerful:
 - Automatically derive a cost equation from an "implementation"
 - Compile-time information about run-time behaviour based on a simple and easy to understand model.
 - When combined with our previous work (ICFP 2016), we can automatically rewrite programs to minimize costs
- Our cost model accurately predicts lower bounds on speedups
- We can choose between alternative parallel implementations
 - different patterns
 - CPU/GPU, manycore/multicore

- Other patterns, e.g. stencil and bulk synchronous parallelism
- More general recursion patterns:
 - e.g. adjoint folds or conjugate hylomorphisms (Hinze)
- Apply to real languages (e.g. Haskell, Erlang)
 - Build a full implementation

RePhrase Project:Refactoring Parallel Heterogeneous Software – a Software Engineering Approach (ICT-644235), 2015-2018, €3.5M budget

8 Partners, 6 European countries UK, Spain, Italy, Austria, Hungary, Israel

Coordinated by @khstandrews

Universidad

Carlos III de Madrid

Bringing Functional Ideas to the Masses!

HOME ABOUT PRODUCT DEVELOPERS MANAGERS CONTACT ParaFormance Zloties 2.5M **Democratising Parallel Software** ABOUT PARAFORMANCE

THANK YOU!

http://rephrase-ict.eu

http://paraphrase-ict.eu

@rephrase_eu

Type System

$$\begin{array}{c} \rho(f) = A \rightarrow B \\ \vdash f : A \xrightarrow{A} B \end{array} \xrightarrow{\vdash e_{1}} : B \xrightarrow{\sigma_{1}} C \\ \vdash e_{2} : A \xrightarrow{\sigma_{2}} B \\ \vdash e_{1} \circ e_{2} : A \xrightarrow{\sigma_{1} \circ \sigma_{2}} C \end{array} \xrightarrow{\vdash e_{1}} : F B \xrightarrow{\sigma_{1}} B \\ \vdash e_{1} : F B \xrightarrow{\sigma_{1}} B \\ \vdash e_{2} : A \xrightarrow{\sigma_{2}} F A \quad G = \text{base } F \\ \vdash hylo_{F} e_{1} e_{2} : A \xrightarrow{HYLO_{G} \sigma_{1} \sigma_{2}} B \end{array} \xrightarrow{\vdash p : T A \xrightarrow{\sigma} T B \\ F = \text{base } T \\ \vdash par_{T} p : T A \xrightarrow{PAR_{F} \sigma} T B \end{array}$$

Figure 5: Structure-Annotated Type System for
$$E$$
.

• $\sigma \sim A \rightarrow B$ is an alternative notation for $A \xrightarrow{\sigma} B$

$$\vdash e \ : \ A \xrightarrow{\sigma_1} B \quad \sigma_1 \cong \sigma_2 \\ \vdash e \ : \ A \xrightarrow{\sigma_2} B$$