

Elixir and Money

Tomasz Kowal

 Source: unknown

 Source: Wikipedia

ACID vs BASE

Atomicity
Consistency

Isolation
Durability

Consistency in ACID

any transaction will bring the database from one
valid state to another

Isolation in ACID

● concurrent execution of transactions results
in a system state that would be obtained
if transactions were executed sequentially

● transaction will behave as if it is the only
operation being performed upon the database

Write A Write B

Write A Write B

Availability
Partition
Tolerance

Consistency

CA

AP

CP

Consistency in CAP

Every read receives the most recent write or an
error

Consistency in consistency models

Set of rules that must be followed by transactions

Strong Weak

EventualCasual

RYW

A B

Write A Write B

A
B

B
A

BASE

● Basically

Available,

● Soft State,

● Eventually Consistent

if (Alice.balance > amount) do

 new_Alice = Alice.balance - amount

 new_Bob = Bob.balance + amount

 Alice.balance = new_Alice

 Bob.balance = new_Bob

end

if (Alice.balance > amount) do

 new_Alice = Alice.balance - amount

 new_Bob = Bob.balance + amount

 Alice.balance = new_Alice

 Bob.balance = new_Bob

end

amount: 10PLN, from: Alice, to: Bob

● Elixir is as a language that makes trading
consistency for availability easy

● you can totally ignore all those fancy, but
complex distributed stuff and there are many
other benefits

Let it crash

:ok = File.write(„file.txt”, „contents”)

Let it crash

case File.write(„file.txt”, „contents) do

 :ok -> print_success_message

 {:error, :enoent} -> display_dialog

end

 Dynos are also restarted (cycled) at least once per day
to help maintain the health of applications running on
Heroku.

 Any changes to the local filesystem will be deleted.

 The cycling happens once every 24 hours (plus up to
216 random minutes, to prevent every dyno for an
application from restarting at the same time).

https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem

Primary Guidance, Navigation and
Control System

Client Server

Transaction

Client

Processing

DB access

Processing

Transaction

Create transsaction

Send

…

…

…

…

Save response

Processing

DB access

Processing

Transaction

Response

How to retry?

● Idempotent calls

How to retry?

● Idempotent calls

● Client side generated UUIDs

How to retry?

● Idempotent calls

● Client side generated UUIDs

● Using PUT

How people see Elixir?

● Great for distributed systems

● Great for complex stateful communication

● Perfect with BASE databases

How do we use Elixir?

● Single node service

● Client – Server without state

● ACID db (Postgres)

Side effects in check

Testing in imperative programming

● Setup state

● Run tested code

● Check new state

Testing in functional programming

● Setup a data structure

● Run tested code

● Check new data structure

Pipe operator

 gather_data

 |> make

 |> series

 |> of

 |> transformations

 |> return_data

Testing plug

 test „renders empty index” do

 conn = build_conn()

 conn =

 get(conn, some_path(conn, :index)

 assert html_response(conn, 200)

 end

Dealing with side effects

def save_if_something(data) ->

 if data.some_condition do

 Repo.insert(data.entity)

 end

 data

end

Dealing with side effects

def save_if_something({data, multi}) ->

 new_multi = if data.some_condition do

 Multi.insert(multi, :tag, data.entity)

 else

 multi

 end

 {data, new_multi}

end

Testing Multi

test „performs insert when condition is met” do

 data = %{some_condition: true, entity: …}

end

Testing Multi

test „performs insert when condition is met” do

 data = %{some_condition: true, entity: …}

 {data, multi} =

 save_if_something({data, Multi.new})

end

Testing Multi

test „performs insert when condition is met” do

 data = %{some_condition: true, entity: …}

 {data, multi} =

 save_if_something({data, Multi.new})

 assert data == data

 assert [{:tag, :insert, …}] ==
 Multi.to_list(multi)

end

Dealing with side effects

def read_from_db(data) ->

 case Repo.get(…) do

 {:ok, entity} →

 %{data | entity: entity}

 _ -> data

 end

end

Dealing with side effects

def read_from_db(data, repo \\ Repo) ->

 case repo.get(…) do

 {:ok, entity} →

 %{data | entity: entity}

 _ -> data

 end

end

Testing explicit contract

defmodule FakeRepo do

 def get(_), do: {:ok, …}

end

test „performs insert when condition is met” do

 data = read_from_db(data, FakeRepo)

 assert data.entity == ...

end

Other benefits

● No callbacks

● Great performance

● Umbrella applications

Tradeoffs

● Rapid evolution can be a disadvantage

● Compilation time

● Type system is optional

● Libraries (?)

Summary

● success story

● don’t assume financial systems are ACID

● Elixir solves problems Ruby can’t solve, but it
solves problems that Ruby can solve

Thank you

Tomasz Kowal
@snajper47

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

