Elixir and Money

Tomasz Kowal

8 clixir ClubCollect



g |
information: i




information: i knowledge:




|# —

information:

knowledge:

conspiracy theory:




99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
68% within
<«<— 1] standard —>
deviation

H— 30 n— 20 U—a 7 u+o U+ 20 i+ 30



ACID vs BASE



Atomicity
Consistency
Isolation
Durability



Consistency in ACID

any transaction will bring the database from one
valid state to another



|Isolation in ACID

e concurrent execution of transactions results
In a system state that would be obtained
If transactions were executed sequentially

e transaction will behave as if it is the only
operation being performed upon the database






Write A Write B



Write A Write B



Consistency

Partition

Availability Tolerance



Consistency in CAP

Every read receives the most recent write or an
error



Consistency In consistency models

Set of rules that must be followed by transactions






Write A Write B






BASE

e Basically

Available,
e Soft State,
 Eventually Consistent



1f (Alice.balance > amount) do
new_Alice = Alice.balance - amount
new_Bob = Bob.balance + amount

Alice.balance = new_Al1ice
Bob.balance = new_Bob
end



1f (Alice.balance > amount) do
new_Alice = Alice.balance - amount
new_Bob = Bob.balance + amount
Alice.balance = new_Alice
Bob.balance = new_Bob

end



amount: 10PLN, from: Alice, to: Bob









e Elixir is as a language that makes trading
consistency for availability easy

e you can totally ignore all those fancy, but
complex distributed stuff and there are many
other benefits



Postgre SQL



Let It crash

ok = File.write(,file.txt”, ,contents”)



Let It crash

case File.write(,,file.txt”, ,contents) do
:0k -> print_success_message
{:error, :enoent} -> display_dialog

end



Dynos are also restarted (cycled) at least once per day
to help maintain the health of applications running on

Heroku.
Any changes to the local filesystem will be deleted.

The cycling happens once every 24 hours (plus up to
216 random minutes, to prevent every dyno for an
application from restarting at the same time).


https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem




problem has been detected and windows has heen shut down To prevent damage
0 wOur computer.

HREAD_MOT_MUTE>_OWMNER,

If this is the first time wou'we seen this Stop error screen,
restart wour computer. If this screen appears again, Tollow
heze steps:

heck to make sure any new hardware or software s properly installed.
If this 4= a new installation, ask wour hardware or software manufacturer
or any wWindows updates wou might need.

If problems continue, di=sable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If wou need to use Safe Mode to remove or disable components, restart
our computer, press F8 to select Advanced startup options, and then
zsalact safe mode.

echinical Tnformation:

HEW STOP: Ox00000011 C0x00234234, 0x00005345, 0x05345345, OxFFFFFFFF)



Primary Guidance, Navigation and
Control System




-~ Transaction — »




-~ Transaction — »




-~ Transaction — »

<« — Response «







How to retry?

e Idempotent calls



How to retry?

e Idempotent calls
 Client side generated UUIDs



How to retry?

e Idempotent calls
 Client side generated UUIDs
e Using PUT



How people see Elixir?

e Great for distributed systems
e Great for complex stateful communication
e Perfect with BASE databases



How do we use Elixir?

e Single node service
e Client — Server without state
« ACID db (Postgres)



Side effects in check



Testing In Imperative programming

e Setup state
e Run tested code
e Check new state



Testing In functional programming

e Setup a data structure
e Run tested code
e Check new data structure






Pipe operator

gather_data
> make
series
of

transformations

vV V V V

return_data



Testing plug

test ,,renders empty index” do
conn = build_conn()
conn =
get(conn, some_path(conn, :index)
assert html_response(conn, 200)

end



Dealing with side effects

def save_if_something(data) ->
1f data.some_condition do
Repo.insert(data.entity)
end
data

end



Dealing with side effects

def save_if_something({data, multi}) ->
new_multi = 1f data.some_condition do
Multi.insert(multi, :tag, data.entity)
else
multi
end
{data, new_multi}

end



Testing Multi

test ,,performs insert when condition 1s met” do
data = %{some_condition: true, entity: ..}

end



Testing Multi

test ,,performs insert when condition 1s met” do
data = %{some_condition: true, entity: ..}
{data, multi} =
save_1f_something({data, Multi.new})

end



Testing Multi

test ,,performs insert when condition 1is met” do
data = %{some_condition: true, entity: ..}
{data, multi} =
save_1f_something({data, Multi.new})
assert data == data

assert [{:tag, :insert, ..}] ==
Multi.to_list(multi)

end



Dealing with side effects

def read_from_db(data) ->
case Repo.get(..) do
{:0k, entity} -
%{data | entity: entity}
_ -> data

end

end



Dealing with side effects

def read_from_db(data, repo \\ Repo) ->
case repo.get(..) do
{:0k, entity} -
%{data | entity: entity}
_ -> data

end

end



Testing explicit contract

defmodule FakeRepo do
def get(_), do: {:0k, ..}
end

test ,,performs insert when condition 1is met” do
data = read_from_db(data, FakeRepo)
assert data.entity == ...

end



Other benefits

 No callbacks
 Great performance
« Umbrella applications



Tradeoffs

Rapid evolution can be a disadvantage
Compilation time

ype system is optional
Libraries (?)



Summary

* SuUcCcess story

 don’t assume financial systems are ACID

e Elixir solves problems Ruby can’t solve, but it
solves problems that Ruby can solve



Thank you

Tomasz Kowal
@snajperd’



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

