
SOME HISTORY OF

FUNCTIONAL

PROGRAMMING LANGUAGES

David Turner

University of Kent &
Middlesex University

LAMBDA DAYS 2017
Kraków 10.02.17

MILESTONES

λ calculus (Church 1936, 1941)

LISP (McCarthy1960)

ISWIM (Landin 1966)

PAL (Evans 1968)

SASL (1973...)

Edinburgh - NPL, early ML, HOPE

KRC & Miranda

Haskell

The λ-calculus (Church 1936, 1941) is a typeless
theory of pure functions with three rules

[α] λx.e ⇔ λy.[y/x]e

[β] (λx.b) a ⇒ [a/x]b

[η] (λx.e x) ⇒ e if x not free in e

There are functional representations of natural
numbers and other data.

1) Church-Rosser theorem

A ⇒ Β, A ⇒ B’ ⊃ B ⇒ C, B’⇒ C
implies normal forms unique (upto α-conversion)

2) second Church-Rosser theorem: repeatedly
reducing leftmost redex is normalising

3) Böhm’s theorem:

if A, B have distinct β,η-normal forms there is a

context C[] with C[A] ⇒ K, C[B] ⇒ KI

Implies α,β,η-conversion is the strongest possible

equational theory on normalising terms

Lazy Evaluation

2nd Church-Rosser theorem: to find normal form
we must in general substitute actual parameters
into function bodies unreduced (lazy evaluation).

Call-by-value is an incorrect reduction strategy

for λ-calculus, but efficient because the actual

parameter is reduced only once! Used from 1960.

Thesis of Wadsworth (1971) showed that the
efficiency disadvantage of normal order reduction

can be overcome by graph reduction on λ-terms.

Turner (1979) compiled a λ-calculus based

language, SASL, to S,K combinators (Curry

1958) and did graph reduction on combinators.

Johnsson (1985) extracts program specific

combinators from source (λ-lifting) to compile
code for graph reduction on stock hardware.

Further developed by Simon Peyton Jones (1992)

to Spineless Tagless G-machine which underlies
the Glasgow Haskell compiler, GHC.

LISP

McCarthy 1960 (developed from 1958)

Computation over symbolic data: formed from

atoms by pairing; S-expressions can represent
lists, trees and graphs.

S-expressions are of variable size and can outlive
the procedure that creates them - requires a heap
and a garbage collector.

The M-language manipulates S-expressions: has
cons, car, cdr, tests, conditional expressions and
recursion. This is computationally complete.

McCarthy showed an arbitrary flowchart can be
coded as mutually recursive functions.

M-language is first order, cannot pass a function
as argument or return as result. McCarthy’s
model was Kleene’s theory of recursive functions.

M-language programs are coded as S-expressions
and interpreted by eval. Allows meta-
programming, by uses of eval and quote.

Some myths about LISP

“Pure LISP” never existed - LISP had assignment
and goto before it had conditional expressions
and recursion. LISP programmers made frequent

use of replacar and replacdr.

LISP was not based on the λ calculus, despite

using the word “lambda” to denote functions.
Based on first order recursion equations.

The M-language was first order, but you could

pass a function as a parameter by quotation, i.e.
as the S-expression for its code. But this gives

the wrong binding rules for free variables
(dynamic instead of lexicographic).

If a function has a free variable, e.g y in

f = λx . x + y

y should be bound to the value in scope for y
where f is defined, not where f is called.

Not until SCHEME (Sussman 1975) did versions
of LISP with static binding appear. Today all

versions of LISP are λ-calculus based.

Static binding and the invention of closures

Algol 60 allowed textually nested procedures and
passing procedures as parameters (but not
returning procedures as results). Algol 60 Report

required static binding of free variables.

Randell and Russell (1964) implemented this by
two sets of links between stack frames. The
dynamic chain linked each stack frame,
representing a function call, to the frame that

called it. The static chain linked each stack
frame to that of the textually containing function
call, which might be much further down the
stack. Free variables are accessed via the static

chain.

If functions can be returned as results, a free
variable might be held onto after the function call
in which it was created has returned, and will no
longer be present on the stack.

Landin (1964) solved this in his SECD machine.
A function is represented by a closure, consisting
of code for the function plus an environment for

its free variables. Closures live in the heap.

ISWIM

In early 60's Peter Landin wrote a series of
seminal papers on the relationship between

programming languages and λ calculus.

"The next 700 programming languages"(1966)
describes an idealised language family (can

choose constants and basic operators). Ideas:

“Church without lambda”
let, rec, and, where

so we can say e.g

expr where f x = stuff

instead of (λ x ⋅ stuff) expr

Offside rule for block structure

assignment; and a generalisation of jumps, the J
operator - allowed a program to capture its own
continuation (see also Landin 1965).

ISWIM = sugared λ + assignment + control
also first appearance of algebraic type defs

At end of paper: Strachey discussion of DL

ISWIM inspired PAL (Evans 1968) and

GEDANKEN (Reynolds 1970)

PAL (MIT 1968)

applicative PAL = sugared λ (let, rec, where) and

conditional expressions, allowed one level of
pattern matching, e.g.

let x, y, z = expr

imperative PAL adds mutable variables &

assignment; and first class labels

data types: integer & floating point numbers,
truth values, strings, tuples, functions, labels

“typeless”, i.e. runtime type checking

first class labels allowed unusual control
structures - coroutines, backtracking

coroutine example - equal fringe problem
backtracking example - parsing

SASL - St Andrews Static Language

I left Oxford in 1972 for a lectureship at St
Andrews and gave a course on programming
language theory in the Autumn term.

During that course I invented a simple DL based
on the applicative subset of PAL. Tony Davie
implemented it in LISP then I implemented it
BCPL by an SECD machine (Easter 1973).

Two changes from applicative PAL
- multi-level pattern matching
- string as list of char
SASL was and remained purely applicative

call by value, runtime typing, let and rec (no λ)
curried functions with left associative appln

data types: int, truthvalue, char, list, function
all data types had same rights

Used for teaching functional programming,
instead of LISP.

Advantages of SASL over LISP for teaching fp

1) pure sugaring of λ calculus, with no imperative
features and no eval/quote distractions

2) has correct scope rules for free variables (static
binding)

3) multi-level pattern matching makes for huge
improvement in readability

LISP

cons(cons(car(car(cdr(x))),cons(car(cdr(car(cdr(

x)))),nil)),cons(cons(car(car(x)),cons(car(cdr(car
(x))),nil)),nil))

becomes

let ((a,b),(c,d)) = x in ((c,d),(a,b))

in 1973 SASL was probably unique in these
properties

Why runtime typing?

LISP and other languages for computation over
symbolic data worked on lists, trees and graphs.

This leads to a need for structural polymorphism -
a function which reverses a list, or traverses a
tree, doesn’t need to know the type of the
elements.

Before Milner (1978) the only way to handle this

was to delay type checking until run time.

SASL example

let f be a curried function of some number of
Boolean arguments., we want to test if it is a
tautology.

taut f = logical f → f ;
taut (f True) & taut (f False)

runtime typing still has followers - Erlang, LISP

evolution of SASL 1973-83

dropped rec allowing recursion as default,
switched from let to where

in 1976 SASL became lazy and added multi-
equation pattern matching for case analysis

A 0 n = n+1
A m 0 = A (m-1) 1
A m n = A (m-1) (A m (n-1))

I got this idea from John Darlington

implemented at St Andrews in 1976 by lazy

version of SECD machine (Burge 1975)

there was also an implementation by Bill
Campbell

at Kent in 1977 reimplemented by translation to

SK combinators and combinator graph reduction

added floats and list comprehensions

Why laziness?

for consistency with Church 1941 - second
Church Rosser theorem

better for equational reasoning

allows interactive I/O via lazy lists and programs

using ∞ data structures

renders exotic control structures unnecessary

- lazy lists replace coroutines (equal fringe
problem)

- list of successes method replaces backtracking

the list of successes method is in my 1976 SASL

manual, but didn’t have a name until Wadler 1985

SASL sites, circa 1986

California Institute of Technology, Pasadena

City University, London

Clemson University, South Carolina

Iowa State U. of Science and Technology

St Andrews University
Texas A & M University

Universite de Montreal

University College London

University of Adelaide

University of British Columbia
University of Colorado at Denver
University of Edinburgh

University of Essex

University of Groningen, Netherlands
University of Kent

University of Nijmegen, Netherlands
University of Oregon, Eugene

University of Puerto Rico

University of Texas at Austin

University of Ulster, Coleraine
University of Warwick

University of Western Ontario

University of Wisconsin-Milwaukee

University of Wollongong

MCC Corporation, Austin Texas

Systems Development Corporation, Pennsylvania

Burroughs Corporation

(24 educational + 3 commercial)

meanwhile in Edinburgh

Burstall (1969) extends ISWIM with algebraic
type defs and case

type tree
 niltree : tree

 node : atom X tree X tree → tree

 case pat1 : exp1 … patn : expn

Darlington’s NPL (1973-5) introduced multi-

equation function defs over algebraic types

fib (0) ⇐ 1

fib (1) ⇐ 1

fib (n+2) ⇐ fib (n+1) + fib (n)

NPL also had “set expressions”

setofeven (X) ⇐ <: x : x in X & even(x) :>

NPL was used for Darlington’s work on program

transformation (Burstall & Darlington 1977)
first order, strongly typed, purely functional, call-
by-value

NPL evolved into HOPE (1980) higher order,

strongly typed with explicit types, polymorphic
type variables, purely functional - kept multi-
equation p/m but dropped set expressions

also in Edinburgh (1973-78) ML developed as
meta-language of Edinburgh LCF (Gordon et al
1979) this had

λ let letrec + references

types built using + x and type recursion

type abstraction

call-by-value, no pattern matching, structures
analysed by conditionals and e.g. isl, isr

polymorphic strong typing with type inference

∗ ∗∗ ∗∗∗ … as type variables

Standard ML (1990) is the confluence of the

HOPE and ML streams, but not pure - has
references and exceptions

KRC

KRC (Turner 1982) was a miniaturised version of
SASL developed for teaching in 1979-1980, very
simple, it had only top level equations (no where)

and built in line editor

See krc-lang.org

An important change - switched from conditional
expressions to conditional equations, with guards;

example

sign x = 1, if x>0
= -1, if x<0

= 0, if x == 0

Combining pattern matching with guards gives
significant gain in expressiveness

KRC also had list comprehensions – with lazy

lists these become very powerful.

Miranda

Developed in 1983-86 Miranda is KRC with
where put back in, plus algebraic types and
polymorphic type system of Milner (1978)

Combining guards with where raises a puzzle
about scope rules - the where clause has to govern
a whole rhs rather than one expression

Another necessary change was the introduction of

a lexical distinction between variables and
constructors, in order to be able to distinguish
pattern matching from function definition

Node x y = stuff

is pattern match, binds x, y to parts of stuff but

node x y = stuff

defines a function, node, of two arguments

Miranda is lazy, purely functional, has list

comprehensions, polymorphic with type inference
and optional type specifications - see Turner
(1986) for fuller description - papers and
downloads at miranda.org.uk

Haskell

Similar in many ways to Miranda, the most
noticeable changes are

Switched guards to left hand side of equations

sign x | x > 0 = 1
| x < 0 = -1

| x==0 = 0

Extended Miranda’s var/constructor distinction to

types, allowing lower case tvars, upper case tcons

map :: (→) → [] → []∗ ∗∗ ∗ ∗∗ Miranda

map :: (a → b) → [a] → [b] Haskell

Almost everything in Miranda is also present in
Haskell but Haskell adds major new features

type classes, monadic I/O, a module system with

two level names

Haskell has a richer syntax. e.g. it provides
conditional expressions and guards, let and where
pattern matching by equations and case etc.

REFERENCES (in date order)

Alonzo Church, J. B. Rosser ``Some Properties of conversion'',

Transactions of the American Mathematical Society 39:472--482

(1936).

A. Church ``The calculi of lambda conversion'', Princeton
University Press, 1941.

H. B. Curry, R. Feys ``Combinatory Logic, Vol I'', North-Holland,

Amsterdam 1958.

John McCarthy``Recursive Functions of Symbolic Expressions
and their Computation by Machine'', CACM 3(4):184--195, 1960.

B. Randell, L. J. Russell ``The Implementation of Algol 60'',
Academic Press, 1964.

P. J. Landin ‘’The Mechanical Evaluation of Expressions'’,

Computer Journal 6(4):308--320 (1964).

Peter J. Landin ``A generalisation of jumps and labels'', Report,
UNIVAC Systems Programming Research, August 1965.

Reprinted in Higher Order and Symbolic Computation,

11(2):125--143, 1998.

Peter J. Landin ``The Next 700 Programming Languages'', CACM
9(3):157--165, March 1966.

A. Evans ``PAL - a language designed for teaching programming

linguistics'', Proceedings ACM National Conference, 1968.

R. M. Burstall ‘’Proving properties of programs by structural

induction'’, Computer Journal 12(1):41-48 (Feb 1969).

John C. Reynolds ``GEDANKEN — a simple typeless language

based on the principle of completeness and the reference concept'',
CACM 13(5):308-319 (May 1970).

W. Burge ‘’Recursive Programming Techniques'’, Addison

Wesley, 1975.

D. A. Turner ``SASL Language Manual'', St. Andrews University,

Department of Computational Science Technical Report CS/75/1,

January 1975; revised version December 1976.

Gerald J Sussman, Guy L. Steele Jr. ``Scheme: An interpreter for
extended lambda calculus'', MEMO 349, MIT AI LAB (1975).

R. M. Burstall, John Darlington ‘’A Transformation System for

Developing Recursive Programs'’, JACM 24(1):44--67, January
1977. Revised and extended version of paper originally presented

at Conference on Reliable Software, Los Angeles, 1975.

R. Milner ‘’A Theory of Type Polymorphism in Programming'’,

Journal of Computer and System Sciences, 17(3):348--375, 1978.

M. J. Gordon, R. Milner, C. P. Wadsworth ``Edinburgh LCF''

Springer-Verlag Lecture Notes in Computer Science vol 78, 1979.

R. M. Burstall, D. B. MacQueen, D. T. Sanella ``HOPE: An

experimental applicative language'', Proceedings 1980 LISP
conference, Stanford, California, pp 136--143, August 1980.

D. A. Turner ``Recursion Equations as a Programming Language'',

in Functional Programming and its Applications, pp 1--28,

Cambridge University Press, January 1982 (editors Darlington,
Henderson and Turner). Reprinted in LNCS 9600:459--478

Springer2016.

Philip Wadler ‘’Replacing a failure by a list of successes'’,

Proceedings IFIP Conference on Functional Programming
Languages and Computer Architecture, Nancy, France, 1985

(Springer LNCS 201:113--128).

Thomas Johnsson ‘’Lambda Lifting: Transforming Programs to

Recursive Equations'’, Proceedings IFIP Conference on Functional
Programming Languages and Computer Architecture Nancy,

France, Sept. 1985 (Springer LNCS 201).

D. A. Turner ``An Overview of Miranda'', SIGPLAN Notices,

21(12):158--166, December 1986.

R. Milner, M. Tofte, R. Harper, D. MacQueen ‘’The Definition of

Standard ML'’, MIT Press 1990, Revised 1997.

S. L. Peyton~Jones ``Implementing lazy functional languages on

stock hardware: the Spineless Tagless G-machine'', Journal of
Functional Programming, 2(2):127--202, April 1992.

Paul Hudak et al. ``Report on the Programming Language

Haskell'', SIGPLAN Notices 27(5) 164 pages (May 1992).

S. L. Peyton~Jones ``Haskell 98 language and libraries: the

Revised Report'', JFP 13(1) January 2003.

