
Building reactive services using functional
programming

Rachel Reese | @rachelreese | rachelree.se
Jet Technology | @JetTechnology | tech.jet.com

 

Taking on Amazon!

Launched July 22
• Both Apple & Android named our app

as one of their tops for 2015
• Over 20k orders per day
• Over 10.4 million SKUs
• 600k first-time buyers
• 500k mobile downloads

 We’re hiring!
http://jet.com/about-us/working-at-jet

Azure Web sites Cloud
services VMs Service bus

queues
Services bus

topics Blob storage

Table
storage Queues Hadoop DNS Active

directory SQL Azure R
F# Paket FSharp.Data Chessie Unquote SQLProvider Python

Deedle FAK
E

FSharp.Async FsBlog Node Angular SAS

Storm Elastic
Search EventStore Microservices Consul Kafka PDW

Splunk Redis SQL Puppet Jenkins Apache
Hive

Apache
Tez

Reactive manifesto

Respo
nsive

Messa
ge-

driven

Resilie
nt

Elastic

Updated manifesto!
Sept 16, 2014

ResponsiveResponsive
The system responds in a timely manner if at all possible. Responsiveness is the
cornerstone of usability and utility, but more than that, responsiveness means that
problems may be detected quickly and dealt with effectively. Responsive systems
focus on providing rapid and consistent response times, establishing reliable upper
bounds so they deliver a consistent quality of service. This consistent behavior in
turn simplifies error handling, builds end user confidence, and encourages further
interaction.

Events

Events in F#

Events

Immutable
Implement
IObservab

le
First-class Composa

ble

First class! Composable!

let register ev =  
 ev  
 |> Event.map (fun _ -> DateTime.Now)  
 |> Event.scan (fun (_, currentStamp : DateTime) lastStamp ->  
 if ((lastStamp - currentStamp).TotalSeconds >
2.0)  
 then (4, lastStamp)  
 else (1, currentStamp))  
 (0, DateTime.Now)  
 |> Event.map fst  
 |> Event.scan (+)  
 |> Event.map (sprintf "Clicks: %d")  
 |> Event.add lbl.set_Text

Event combinators

let using f event =  
 event |> Event.scan (fun state input ->  
 if state <> Unchecked.defaultof<_> then  
 (state :> IDisposable).Dispose()  
 f input) Unchecked.defaultof<_>

Add Choose Filter Map

MergePairwisePartitionScan

Split

colors  
|> Event.using (fun clr -> new SolidBrush(clr))  
|> Event.add (fun br -> frm.BackBrush <- br)

Message-drivenMessage-driven
Reactive Systems rely on asynchronous message-passing to establish a boundary between
components that ensures loose coupling, isolation, location transparency, and provides the
means to delegate errors as messages. Employing explicit message-passing enables load
management, elasticity, and flow control by shaping and monitoring the message queues in
the system and applying back-pressure when necessary. Location transparent messaging as a
means of communication makes it possible for the management of failure to work with the
same constructs and semantics across a cluster or within a single host. Non-blocking
communication allows recipients to only consume resources while active, leading to less
system overhead.

Async workflows

Async vs. concurrent vs. parallel

Asynchronous
• Non-blocking, specifically in reference to I/O operations (not

necessarily parallel, can be sequential).

Concurrent
• Multiple operations happening at the same time (not necessarily in

parallel).

Parallel
• Multiple operations processed simultaneously.

Computation expressions

• A single syntactic mechanism which
gives a nice syntax for multiple
abstract computation types.

• Monads, yes

• But also:
• Monoids
• Additive monads*
• Computations constructed using

monad transformers*

http://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

Async workflows

Reads similarly to classic, linear synchronous code
Easy to convert
Easy to understand and reason about.

Consider classic synchronous code

let webClient = new WebClient()
let data = webClient.DownloadData(uri)
outputStream.Write(data, 0, data.Length)

let processingAgent() =
 Agent<string * string>.Start(fun inbox ->
 async { while true do
 let! name,url = inbox.Receive()
 let uri = new System.Uri(url)
 let webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 printfn "Read %d characters for %s" html.Length name })

Async workflow

let rec loop count =
 async {
 let! ev = Async.AwaitEvent lbl.MouseDown
 lbl.Text <- sprintf "Clicks: %d" count
 do! Async.Sleep 1000
 return! loop <| count + 1
 }  

let start = Async.StartImmediate <| loop 1

The actor model

Dynamic
creation of

actors

Inclusion of
actor

addresses in
messages

Interaction
only through

direct
asynchronou
s message

passing

! No
restriction on

message
arrival order.

The actor model is a model of concurrent computation using actors
which is characterized by:

What is an actor?

An independent computational entity which contains a
queue, and receives and processes messages.

F# Agents

Actor = Agent = MailboxProcessor

Agents: basic syntax

let alloftheagents =
 [for i in 0 .. 100000 ->
 MailboxProcessor<string>.Start(fun inbox ->
 async { while true do
 let! msg = inbox.Receive()
 if i % 10000 = 0 then
 printfn "agent %d got message '%s'" i
msg })]

for agent in alloftheagents do
 agent.Post "ping!"

Getting replies from an agent

let agent =
 MailboxProcessor<string * AsyncReplyChannel<string>>.Start(fun
inbox ->
 let rec loop () =
 async {
 let! (message, replyChannel) = inbox.Receive()
 replyChannel.Reply(String.Format("Received message: {0}",
message))
 do! loop ()
 }
 loop ())

let messageAsync = agent.PostAndAsyncReply(fun rc-> input, rc)

Scanning an agent’s queue

let inprogressAgent = new MailboxProcessor<Job>(fun _ -> async { ()
})

let completeAgent = MailboxProcessor<Message>.Start(fun inbox ->
 let rec loop n =
 async {
 let! (id, result) = inbox.Receive()
 printfn "The result of job #%d is %f" id result
 do! loop <| n + 1
 }
 loop 0)

Scanning an agent’s queue

let cancelJob(cancelId) =
 Async.RunSynchronously(
 inprogressAgent.Scan(fun (jobId, result, source) ->
 let action =
 async {
 printfn "Canceling job #%d" cancelId
 source.Cancel()
 }

 if (jobId = cancelId) then
 Some(action)
 else
 None))

One major difference from Erlang

F# agents do not work across process boundaries, only
within the same process.

! Enter Cricket (previously FSharp.Actor)

Cricket

let greeter =
 actor {
 name "greeter"
 body (
 let rec loop() = messageHandler {
 let! msg = Message.receive()

 match msg with
 | Hello -> printfn "Hello"
 | HelloWorld -> printfn "Hello World"
 | Name name -> printfn "Hello, %s" name
 return! loop()
 }
 loop())
 } |> Actor.spawn

greeter <-- Name(”From F#
Actor")

Cricket remoting

let System =
 ActorHost.Start()
 .SubscribeEvents(fun (evt:ActorEvent) -> printfn "%A" evt)
 .EnableRemoting(
 [new
TCPTransport(TcpConfig.Default(IPEndPoint.Create(12002)))],
 new TcpActorRegistryTransport( 
 TcpConfig.Default(IPEndPoint.Create(12003))),
 new UdpActorRegistryDiscovery(UdpConfig.Default(), 1000)
)

Cricket remoting
let ping count =
 actor {
 name "ping"
 body (
 let pong = !~ "pong"
 let rec loop count =
 messageHandler {
 let! msg = Message.receive()
 match msg with
 | Pong when count > 0 ->
 if count % 1000 = 0 then printfn "Ping: ping %d" count
 do! Message.post pong.Value Ping
 return! loop (count - 1)
 | Ping -> failwithf "Ping: received a ping message, panic..."
 | _ -> do! Message.post pong.Value Stop
 }
 loop count)}

ResilientResilient
The system stays responsive in the face of failure. This applies not only to highly-
available, mission critical systems — any system that is not resilient will be unresponsive
after a failure. Resilience is achieved by replication, containment, isolation and
delegation. Failures are contained within each component, isolating components from
each other and thereby ensuring that parts of the system can fail and recover without
compromising the system as a whole. Recovery of each component is delegated to
another (external) component and high-availability is ensured by replication where
necessary. The client of a component is not burdened with handling its failures.

Error handling

Tasks that are run using Async.RunSynchronously report
failures back to the controlling thread as an exception. Use
Async.Catch or try/catch to handle.
Async.StartWithContinuations has an exception
continuation.
Supervisor pattern.

Async.Catch

Async.StartWithContinuations

Getting replies from an agent

Async.StartWithContinuations

Scanning an agent

Supervisors

Supervisors

ElasticElastic
The system stays responsive under varying workload. Reactive Systems can react
to changes in the input rate by increasing or decreasing the resources allocated to
service these inputs. This implies designs that have no contention points or central
bottlenecks, resulting in the ability to shard or replicate components and distribute
inputs among them. Reactive Systems support predictive, as well as Reactive,
scaling algorithms by providing relevant live performance measures. They achieve
elasticity in a cost-effective way on commodity hardware and software platforms.

Scaling agents on demand

General resources & additional reading

General resources
http://fsharp.org/
Twitter: #fsharp
F# channel on Functional
Programming Slack

Additional reading on F#
F# for Fun and Profit
F# Weekly

Additional reading for F#
MailboxProcessors & Async
Concurrency in F#
FSharp.Control.Reactive
Cricket
C# async gotchas

http://fsharp.org/
http://fsharp.org/
https://functionalprogramming.slack.com/messages/fsharp/
http://fsharpforfunandprofit.com/
http://fsharpforfunandprofit.com/
https://sergeytihon.wordpress.com/category/f-weekly/
https://sergeytihon.wordpress.com/category/f-weekly/
https://github.com/DCFsharp/ConcurrencyInFsharp
http://fsprojects.github.io/FSharp.Control.Reactive/
https://github.com/fsprojects/Cricket
http://tomasp.net/blog/csharp-async-gotchas.aspx/

Building reactive services using functional
programming

Rachel Reese | @rachelreese | rachelree.se
Jet Technology | @JetTechnology | tech.jet.com

