Functional & Reactive
Uls with JavaScript

Lambda Days 2016



Survey



OOP: Alan Key

Objects communicate by asynchronous message passing



/aiste

@zaiste



http://twitter.com/zaiste







My story



20005



Python

Research Internship at LIMSI in Paris



~unctional
programming



First-class functions

Functions as datatype: passed around, returned, etc.



OCaml

Introduction to functional programming by Marc Pouzet

12



ML

Developed in 1970 by Robin Milner

13



ML Influence

Haskell, Elm, ...



UIS



HC

Human-Computer Interaction



Model-View-Controller

Trygve Reenskaug in the 19/70s



omalltalk-76

At XEROX PARC



MVC

Digital model vs Mental model



Controller




Callback-based

Classical approach



Functional Uls



React

Greatly improved rendering engine



Declarative

Simple and straightforward Ul representation



Ul Is fh of state

Functional foundation



f(Do) -> Vo



f(D1) -> \/+



diff(Vo, V1) = changes



Virtual DOM




User Inputs

Action Creators

Dispatcher

Callbacks




New Concepts

Difficult for newcomers



Reactive
programming



HH

A spreadsheet

Most popular reactive programming tool






Passive

B allows others to change its state

35



Reactive

B manages its state by reacting to external events

36



Separation of concerns

and B are responsible for themselves



ENncapsulation

B hides its internals



Reactive

Independent, selt-contained modules

39



Values over time

First class concept



Observable

Simple abstraction: Observer + Iterator

41



000 0—

Marble Diagram



| azy event stream

O+ events, finite or infinite



Asynchronicity

Doing more simpler



What not how

Declarative approach to program logic



Simple composition

Qutputs can be given as inputs



Unification

Promises, Callbacks, Web Workers, Web Sockets



RXxJS

Javascript reactive programming library



const doubleClickObservable = clickObservable
.buffer(() => clickObservable.debounce(250))

.map(arr => arr.length)
Jilter(X => X === 2);

49



| et's combine






Cycle.|s

Functional and reactive Ul framework in JavaScript

52



Concise

Both the framework and applications built with it



Simple AP|

Cycle.run()



Computer

fn : Input -> output

Constant dialogue


http://cycle.js.org/dialogue.html

computer()

fn : 1nputDevices -> outputDevices



human()

fn : senses -> actuators



Uls as « cycles »

Natural way for interactions



main()

Your application as a pure function



function computer(userkEventsObservable) {
return userkventsObservable
.map(event => /* ,. ., */)
.f1lter(somePredicate)
.flatMap(transformItToScreenPixels);




Sources

inputs: read effects from the external world



Sinks

outputs: write effects to apply to the external world



Drivers

Plugins that manage the side effects



Model-View-Intent

Parts of the main() function



INtent

Processing inputs from the external world



Vlioqel

It represents the state



View

it creates the output e.g. virtual dom



Composable

Dataflow components



Demo



function main() {
return {
DOM: Rx.Observable.interval(1000)
.map(1 => CycleDOM.h1('" + 1 + ' seconds elapsed'))
s
ks



function main(sources) {
return {
DOM: sources.DOM.select('.field').events('input’)

.map(ev => ev.target.value)

.startWith('")

.map(name =>

div([

inhput('.f1eld', {attributes: {type: "text'}}),
hl1('Hello " + name),

1)
)
s
}



Functional

Applications made of pure functions

/2



Reactive

Observables simplify events, async & errors handling

/3



L Imitations

http://lambda-the-ultimate.org/node/4900



http://lambda-the-ultimate.org/node/4900

Q7 / Thank you



