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“The primary motivation was to amuse myself.”



‘| like the way it makes programming enjoyable.”

- Matz









“So, we started Lua with the very specific goal of
providing a language for problems

2]

- Roberto lerusalimschy



“So, we started Lua with the very specific goal of
providing a language for problems that need a
good configuration language.”

- Roberto lerusalimschy






The best of functional programming in your browser
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“Many functional folks



*“Many functional folks have a way of saying
extremely interesting and useful things
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< elm

*“Many functional folks have a way of saying
extremely interesting and useful things in a totally
inaccessible impractical way,
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D elm

*“Many functional folks have a way of saying
extremely interesting and useful things in a totally
inaccessible impractical way, and | wanted to fix this.”
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“Elm is not about being theoretically better. It is
about being demonstrably better.”

- Evan Czaplicki









PN= Haskell

“On the lazy side , you had as
many programming languages as there
were researchers.”



PN= Haskell

“If he had said yes

, Haskell would not exist.”

- John Hughes
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@ Clojure

“I wanted a Lisp




@ Clojure

“I wanted a Lisp for Functional
Programming,



@ Clojure

“I wanted a Lisp for Functional
Programming, symbiotic with an established
Platform, ?



Clojure

“I wanted a Lisp for Functional
Programming, symbiotic with an established
Platform, and designed for Concurrency.”

- Rich Hickey
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“A simple, object-oriented, distributed, interpreted,
robust,
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“A simple, object-oriented, distributed, interpreted,
robust, secure,
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“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral,
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“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance,
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“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance, multithreaded,
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“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance, multithreaded, and dynamic language.”
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Ruby

MINSWAN



Matz Is Nice So We Are Nice



Matz Is Nice So We Are Nice



Ruby
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Syntax has a profound
Impact on



Syntax has a profound
impact on productivity



Sugar makes programmers
more productive

“Languages are enhancers for
your mind that shape the way
you attack programming.”




Syntax must be simple



Syntax must be simple




Syntax has a profound
Impact on



Syntax has a profound
impact on program design



Syntax must be profoundly
simple and uniform



Syntax must be profoundly
simple and uniform

o ISP



/%ynta%ﬁnust be profoundly
simple and uniform



/%ynta%ﬁnust be profoundly
simple and uniform
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Syntax has a profound
Impact on



Syntax has a profound
impact on marketshare



Syntax has a profound
impact on marketshare

Lo Js









We will be lazy



Our functions will be pure



Our types are strict and static






Make concurrency simple



Let it crash






Approachable Theory



Callbacks Stink
























Efficient
Program
Design







ldioms



Abstractions









class String class NilClass class Object

def blank? def blank? def blank?
self == "" true false
end end end
end end end

[nil, 4, ""].map do |item]
item.blank?
end
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Adaptation



Extension
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self,
make ref,

Top
Ref

Pid = spawn link(fun ->
Top ! { Ref, ... }
)

receive
{ Ref, Value } -> Value
end
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task = Task.async(&do _something/0)

result = Task.await(task)









defmacro



defprotocol



widgets

> Enum.filter...
> Enum.map...

> Enum.take(5)




widgets

> Stream.filter...
> Stream.map...

> Enum.take(5)




widgets

> Stream.expensivel...
> Stream.expensive?2...
> Enum.take(5)




widgets
> Stream.expensivel...
>

Stream.expensive2l...
p

Enum.take(5)




widgets
> Stream.expensivel...
async_process...

Stream.expensivel...
async_process...

Enum.take(5)

vV VvV V VvV



widgets
> Expensive.taskl...
p

>
> Expensive.task2...
> P

>

Enum.take(5)




widgets
process farm(10)

process farm(20)

>
>
>
> Enum.take(5)

> Expensive.taskl...

Expensive.task2...



widgets
distribute(10)

distribute(20)

>
>
>
> Enum.take(5)

> Expensive.taskl...

Expensive.task2...



widgets
> distribute(20)

Enum.take(n)

Stream.expensivel...
Stream.expensive?...
Stream.expensives3...
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Other
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W=Haskell juli'é

Other
Examples
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