Things that Matter

Decisions that Shape Languages

The :
Pragmatic
FOSranmers

Seven Languages
in Seven Weeks

A Pragmatic .
Guide to et
Learning
Programming
Languages

Bruce A.Tate

Edited by Jacguelyn Carter

y The -
The . Pragmatic
Pragmatic Ogrammers
ogranumers

Seven More Languages

in Seven Weeks
Seven Languages Languages That Are

in Seven Weeks Shaping the Future ,

A Pragmatic
Guide to
Learning
Programming
Languages

Bruce A.Tate

Edited by Jacguelyn Carter

Bruce A. Tate, Fred Daoud,
Ian Dees, and Jack Moffitt
Foreword by José Valim

Edited by Jacquelyn Carter

“The primary motivation was to amuse myself.”

‘| like the way it makes programming enjoyable.”

- Matz

“So, we started Lua with the very specific goal of
providing a language for problems

2]

- Roberto lerusalimschy

“So, we started Lua with the very specific goal of
providing a language for problems that need a
good configuration language.”

- Roberto lerusalimschy

The best of functional programming in your browser

ielm

“Many functional folks

*“Many functional folks have a way of saying
extremely interesting and useful things

7

< elm

*“Many functional folks have a way of saying
extremely interesting and useful things in a totally
inaccessible impractical way,

7

D elm

*“Many functional folks have a way of saying
extremely interesting and useful things in a totally
inaccessible impractical way, and | wanted to fix this.”

- -
K gy N
""-;'.' Ja AN
Qs 3 B -
[4 o
v & N
S B
Sy -
L A
.“
&)
Y
-
|

“Elm is not about being theoretically better. It is
about being demonstrably better.”

- Evan Czaplicki

PN= Haskell

“On the lazy side , you had as
many programming languages as there
were researchers.”

PN= Haskell

“If he had said yes

, Haskell would not exist.”

- John Hughes

@ Clojure

@ Clojure

“I| wanted

@ Clojure

“I wanted a Lisp

@ Clojure

“I wanted a Lisp for Functional
Programming,

@ Clojure

“I wanted a Lisp for Functional
Programming, symbiotic with an established
Platform, ?

Clojure

“I wanted a Lisp for Functional
Programming, symbiotic with an established
Platform, and designed for Concurrency.”

- Rich Hickey

£ java

——

“A simple, object-oriented,

(() Java

y

“A simple, object-oriented, distributed,

((> Java

g:_/_/

“A simple, object-oriented, distributed, interpreted,

(() Java

‘;:::::i'

“A simple, object-oriented, distributed, interpreted,
robust,

((> Java

gE——"/_._-/

“A simple, object-oriented, distributed, interpreted,
robust, secure,

((> Java

gE——"/_._-/

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral,

(() Java

;—:/_/

—

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable,

(() Java

;—:/_/

—

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance,

(() Java

;___/

——

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance, multithreaded,

(() Java

g____/

——

“A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-
performance, multithreaded, and dynamic language.”

Standard
COBOL

Standard
COBOL

® Population
® Support

® |nvestment

((

>Java
[Smalltalk]

) ® Population
=lava o Support

Q

. smatitalld @ Inyestment

G

[.
=lava 4 Community

® Population

‘ smatitalld @ Inyestment

G

® Population
® Support

® |nvestment

Blgnal .anpl sieow Sae . pus liish YVondow . dilamsslions

Lo 100,300 i3 s 4R 3 T

Ao o LT AL
pLaChant 1540 .0 SaFiaet (e r.¥v.0))

b .o ¥ iaL ¥ sl Ly ™

P PaArtT mamhars
Fraanw watmallse vumdwin
pETeets MAAL. ML £ Y T

12000 209 2
st oot (R4t o) pliadiloe 1) onlare affeete frem)
| Falid il d0biivie % !

p.ol - y ") ' y » y wl ‘0L s
P e radine owiir offeen e
sehaPMuish Fromiar (vndian, fegisss 1280 sl lom ‘)
| 1aiid oin poiyews (19,5 et ey mabhaPwin | 0§ "W saie |
SAPMS 1 AAPsivesl i)
VS (fromPoinr 1l) 35, s 1ot i i
salw » y el LY =
sebPercen fraetiom
e |SaBAs ing 1N Lam Arwmmais (Teastiam * 20010 A
» »
.

| 30, LighiCrees, S Talim, S Llhhles
s ADPWVIUIRIA, DU, STean, eilow, T, parpis

- ‘e T » W -
.4 = e

tomal Lism s

Mt . | » 2rnall »

R o A T vod ‘e e

oy * [W ALt canlste ~ e -

Ruby

MINSWAN

Matz Is Nice So We Are Nice

Matz Is Nice So We Are Nice

Ruby

MINSWAN

&

eliXir

Syntax has a profound
Impact on

Syntax has a profound
impact on productivity

Sugar makes programmers
more productive

“Languages are enhancers for
your mind that shape the way
you attack programming.”

Syntax must be simple

Syntax must be simple

Syntax has a profound
Impact on

Syntax has a profound
impact on program design

Syntax must be profoundly
simple and uniform

Syntax must be profoundly
simple and uniform

o ISP

/%ynta%ﬁnust be profoundly
simple and uniform

/%ynta%ﬁnust be profoundly
simple and uniform

&

elixir

Syntax has a profound
Impact on

Syntax has a profound
impact on marketshare

Syntax has a profound
impact on marketshare

Lo Js

We will be lazy

Our functions will be pure

Our types are strict and static

Make concurrency simple

Let it crash

Approachable Theory

Callbacks Stink

Efficient
Program
Design

ldioms

Abstractions

class String class NilClass class Object

def blank? def blank? def blank?
self == "" true false
end end end
end end end

[nil, 4, ""].map do |item]
item.blank?
end

Efficient
Program
Design

Efficient

Program
Design

Efficient
Language
Design

Adaptation

Extension

(+12)

(+12)

self,
make ref,

Top
Ref

Pid = spawn link(fun ->
Top ! { Ref, ... }
)

receive
{ Ref, Value } -> Value
end

&

eliXir

task = Task.async(&do _something/0)

result = Task.await(task)

defmacro

defprotocol

widgets

> Enum.filter...
> Enum.map...

> Enum.take(5)

widgets

> Stream.filter...
> Stream.map...

> Enum.take(5)

widgets

> Stream.expensivel...
> Stream.expensive?2...
> Enum.take(5)

widgets
> Stream.expensivel...
>

Stream.expensive2l...
p

Enum.take(5)

widgets
> Stream.expensivel...
async_process...

Stream.expensivel...
async_process...

Enum.take(5)

vV VvV V VvV

widgets
> Expensive.taskl...
p

>
> Expensive.task2...
> P

>

Enum.take(5)

widgets
process farm(10)

process farm(20)

>
>
>
> Enum.take(5)

> Expensive.taskl...

Expensive.task2...

widgets
distribute(10)

distribute(20)

>
>
>
> Enum.take(5)

> Expensive.taskl...

Expensive.task2...

widgets
> distribute(20)

Enum.take(n)

Stream.expensivel...
Stream.expensive?...
Stream.expensives3...

Other
Examples

Other
Examples

W=Haskell

Other
Examples

N
N/

Aelm

W=Haskell juﬁ‘il

Other
Examples

O\
N/

&elm

W=Haskell juli'é

Other
Examples

N

194 elm ‘?Idris

’
-
-

o
b T

v o ’-. ‘;
- . ot '. : ./__ . . : ' \.‘ :
- } ..'_ -
a'/'l"'.' " .4‘ “ﬁ
. : - Tl \A" -
‘ . . \ . " At A .
- . -

Adatpr

’
-
-

o
b T

v o ’-. ‘;
- . ot '. : ./__ . . : ' \.‘ :
- } ..'_ -
a'/'l"'.' " .4‘ “ﬁ
. : - Tl \A" -
‘ . . \ . " At A .
- . -

Adatpr

