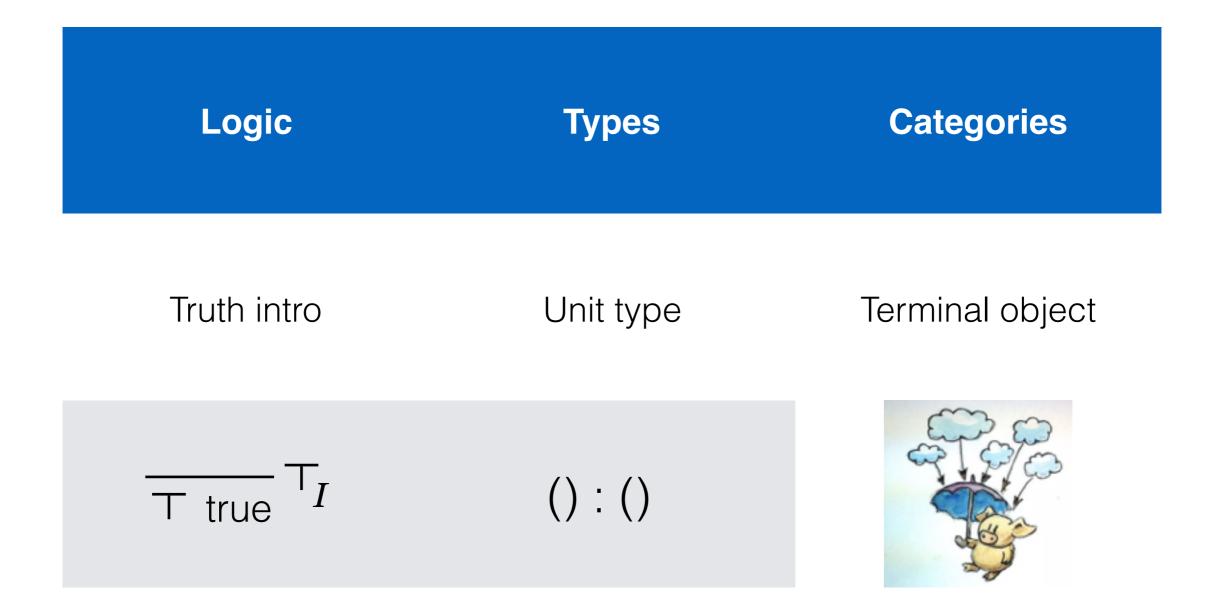
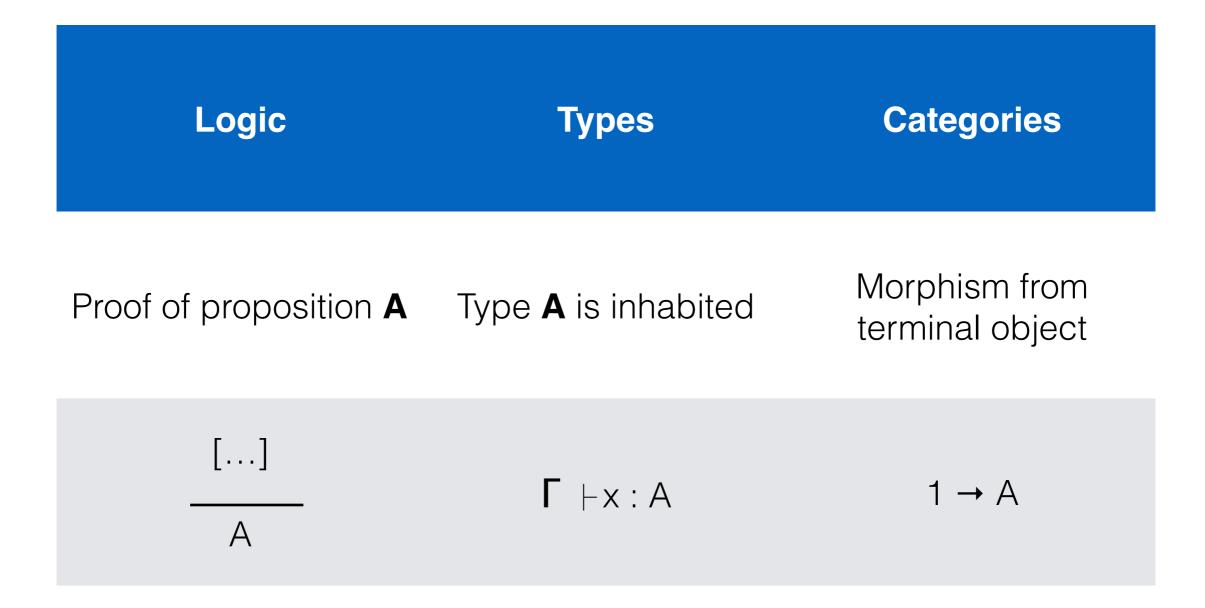
The Truth about Types

Bartosz Milewski

Truth



Proofs

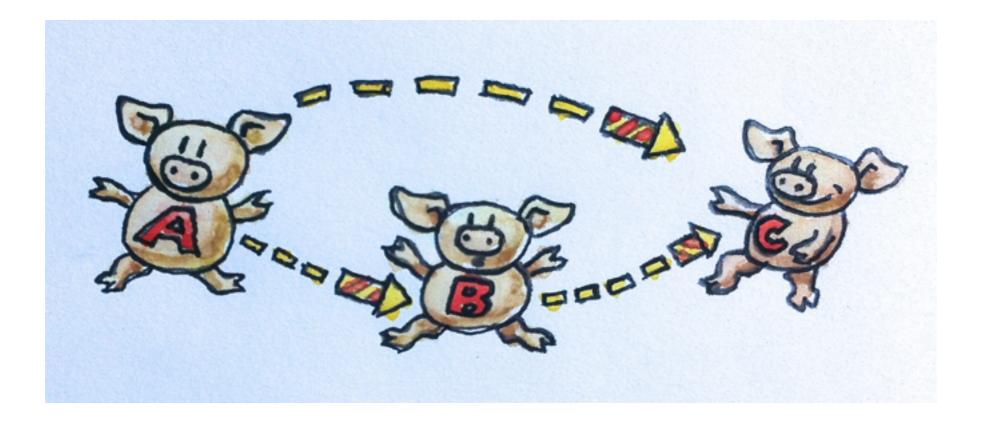


Category Theory

Category

- A generalisation of a graph (transitive closure)
- Nodes are called objects: a, b, c...
- Arrows between objects are called morphisms:

- Arrows are composable:
 - f :: a -> b,
 - g :: b -> c,
 - $\mathbf{g} \circ \mathbf{f} :: \mathbf{a} \rightarrow \mathbf{c}$ (always exists!)
- Composition is associative



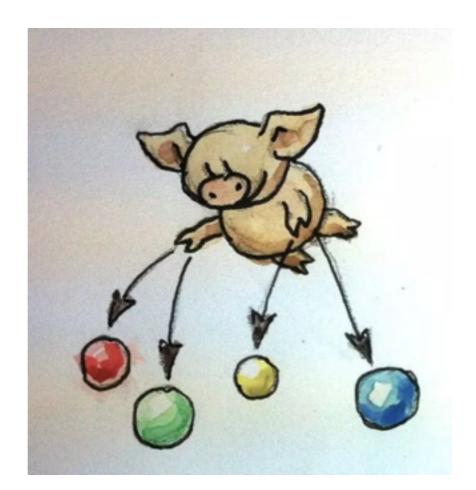
- Identity arrows (always exist!):
 - id_a :: a -> a,
 - id \circ f = f,
 - g id = g

Set

- Category in which:
 - Objects are sets
 - Arrows are functions

Initial Object

There is a unique arrow from initial object to any other object



Initial Object in Set

- Empty set Ø
- Unique function from Ø -> a
- absurd :: Void -> a
- Void is the uninhabited type

Terminal Object

 There is a unique arrow from any object to terminal object

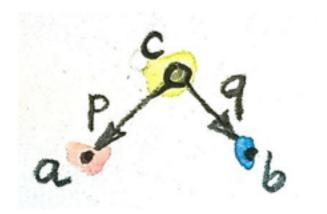
Terminal Object in Set

- Singleton set
- Unique function: for every element of set a return the single element of the singleton set
- Unit type () with one element ()
- unit :: a -> ()
- unit _ -> ()

Universal Constructions

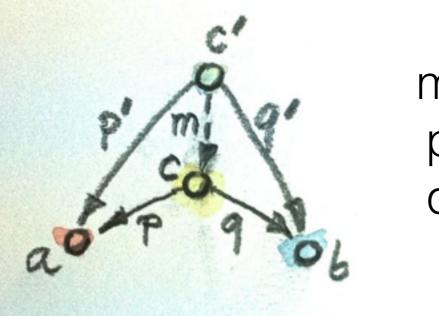
Product (Elimination)

- c is a product of a and b
- Two arrows p and q (projections)
- In Set: cartesian product, pairs of elements
- In logic: and (conjunction elimination)



Product (Universality)

- Universal construction
- Product is the "best" candidate
- Any other candidate (c', p', q') uniquely factorizes through (c, p, q).

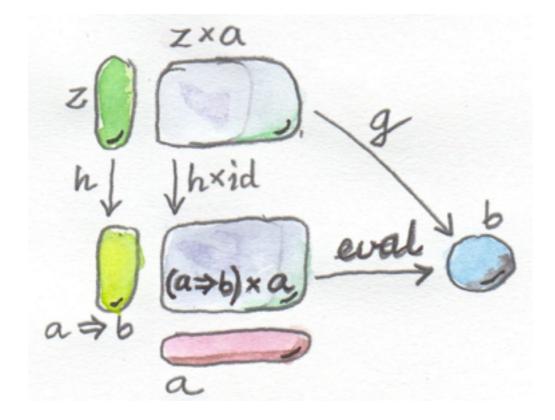


$$m :: c' -> c$$
$$p' = p \circ m$$
$$a' = a \circ m$$

Conjunction intro: if a follows from c' (p') and b follows from c' (q') a ~ b (c) follows from c' (m)

Function Object

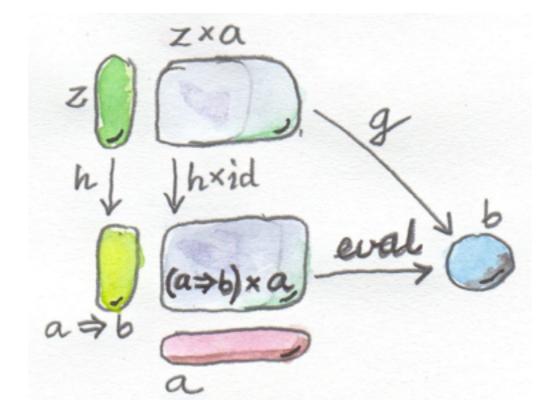
- Universal construction
- Logical implication



Modus ponens

Currying

- **g** as a function of two arguments **z** and **a**
- h is the curried version z->(a->b)



Negation

- Not A corresponds to A -> Void
- If A inhabited, A->Void not inhabited
- If A not inhabited (is Void), Void->Void is id_{Void}

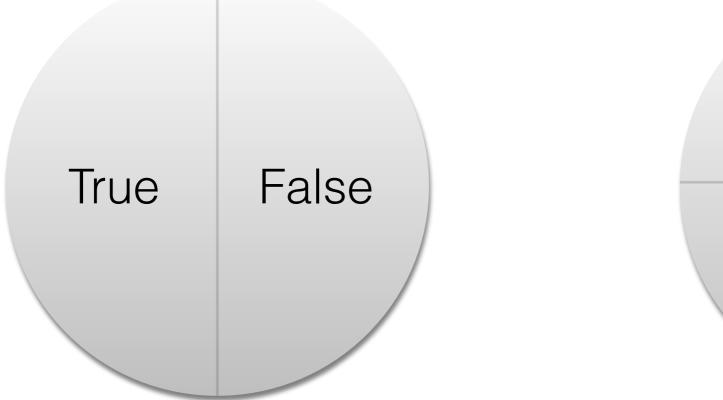
Cartesian Closed Category

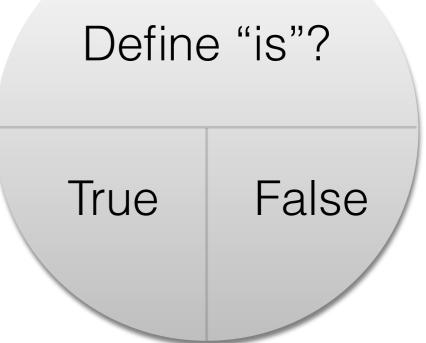
- CCC
 - Has all products (cartesian)
 - Has all function objects (exponentials) (closed)
 - Has terminal object (nullary product)

Curry-Howard-Lambek

- Lambek: CCC is a model for simply typed lambda calculus
 - Objects are types
 - Morphisms are terms
 - Environment Γ is a product of judgments a:A
 - Empty environment is ():()

Logical Universes





Classical

Intuitionistic

Intuitionistic Logic

- No LEM
 - A | (A->Void) not provable
- No double negation elimination
 - (A->Void) ->Void not the same as A
- Curry-Howard equivalence: simply typed lambda calculus equivalent to intuitionistic logic

Goedel Gentzen

- Classical logic can be embedded in intuitionistic logic
 - Classical logic = Intuitionistic + double negation elimination (or LEM)
- Map every classical formula to its double negation

Continuations

- Double negation: (a->Void) ->Void
- More general: (a->r) ->r
- a->r is a continuation
- CPS transform: a is identified with (a->r) ->r
- Classical logic!

Yoneda's Lemma

- F is a functor from category C to Set
- Hom-set is the set of morphisms between object a and b, C(a, b)
- Fix a and C(a, _) is a functor from C to Set
- Yoneda: Nat(C(a, x), F x) ~ F a
- forall x . (a \rightarrow x) \rightarrow F x \sim F a
- Pick F = identity functor and you get CPS

Conclusions

- It's all the same:
 - Type theory (typed lambda calculus)
 - Category theory (Cartesian Closed)
 - Logic
- Lots of cross-pollination
- Grand Unified Theory? HoTT?