
The Truth about Types
Bartosz Milewski

TruthLogic Types Categories

Truth intro Unit type Terminal object

true I () : ()

Truth

Proofs

Logic Types Categories

Proof of proposition A Type A is inhabited Morphism from
terminal object

[…]

A
Γ ├ x : A 1 → A

Category Theory

Category
• A generalisation of a graph (transitive closure)

• Nodes are called objects: a, b, c…

• Arrows between objects are called morphisms:

• f :: a -> b

• Arrows are composable:

• f :: a -> b,

• g :: b -> c,

• g ○ f :: a -> c (always exists!)

• Composition is associative

• Identity arrows (always exist!):

• ida :: a -> a,

• id ○ f = f,

• g ○ id = g

Set

• Category in which:

• Objects are sets

• Arrows are functions

Initial Object
• There is a unique arrow from initial object to any

other object

Initial Object in Set

• Empty set ⌀

• Unique function from ⌀ -> a

• absurd :: Void -> a

• Void is the uninhabited type

Terminal Object
• There is a unique arrow from any object to terminal

object

Terminal Object in Set
• Singleton set

• Unique function: for every element of set a return
the single element of the singleton set

• Unit type () with one element ()

• unit :: a -> ()

• unit _ -> ()

Universal
Constructions

Product (Elimination)
• c is a product of a and b

• Two arrows p and q (projections)

• In Set: cartesian product, pairs of elements

• In logic: and (conjunction elimination)

c :: (a, b)
p (a, b) = a
q (a, b) = b

a ⌃ b
a

a ⌃ b
b

Product (Universality)
• Universal construction

• Product is the “best” candidate

• Any other candidate (c’, p’, q’) uniquely factorizes
through (c, p, q).

m :: c’ -> c
p’ = p ○ m
q’ = q ○ m

Conjunction intro:
if a follows from c’ (p’)
and b follows from c’ (q’)
a ⌃ b (c) follows from c’ (m)

Function Object
• Universal construction

• Logical implication

Modus ponens

(a=>b) ⌃ a
b

Currying
• g as a function of two arguments z and a

• h is the curried version z->(a->b)

Negation

• Not A corresponds to A -> Void

• If A inhabited, A->Void not inhabited

• If A not inhabited (is Void), Void->Void is idVoid

Cartesian Closed Category

• CCC

• Has all products (cartesian)

• Has all function objects (exponentials) (closed)

• Has terminal object (nullary product)

Curry-Howard-Lambek
• Lambek: CCC is a model for simply typed lambda

calculus

• Objects are types

• Morphisms are terms

• Environment Γ is a product of judgments a:A

• Empty environment is ():()

Logical Universes

Classical Intuitionistic

True
True False

False

Define “is”?

Intuitionistic Logic
• No LEM

• A | (A->Void) not provable

• No double negation elimination

• (A->Void)->Void not the same as A

• Curry-Howard equivalence: simply typed lambda
calculus equivalent to intuitionistic logic

Goedel Gentzen

• Classical logic can be embedded in intuitionistic
logic

• Classical logic = Intuitionistic + double negation
elimination (or LEM)

• Map every classical formula to its double negation

Continuations
• Double negation: (a->Void)->Void

• More general: (a->r)->r

• a->r is a continuation

• CPS transform: a is identified with (a->r)->r

• Classical logic!

Yoneda’s Lemma
• F is a functor from category C to Set

• Hom-set is the set of morphisms between object a and
b, C(a, b)

• Fix a and C(a, _) is a functor from C to Set

• Yoneda: Nat(C(a, x), F x) ~ F a

• forall x . (a -> x) -> F x ~ F a

• Pick F = identity functor and you get CPS

Conclusions
• It’s all the same:

• Type theory (typed lambda calculus)

• Category theory (Cartesian Closed)

• Logic

• Lots of cross-pollination

• Grand Unified Theory? HoTT?

