Performance evaluation of various functional
programming styles

Jan Pustelnik

GFT Poland,
ul. Sterlinga 8a, Lodz, Poland

LambdaDays 2015, 2015-02-26

Jan Pustelnik Performance evaluation of various functional programming styles

Outline

@ Introduction
@ General
@ Benchmarking
o Code

© Sorting
@ MergeSort
@ QuickSort
@ HeapSort
o Correctness

© Summary

Jan Pustelnik Performance evaluation of various functional programming styles

Introduction General
Benchmarking
Code

This talk is devoted to analysis of how various functional
programming styles impact the performance of running programs.
The examples presented will be mainly in Haskell, Scala and (!)
C++

Jan Pustelnik Performance evaluation of various functional programming styles

Introduction General
Benchmarking
Code

Hardware

Windows 7 machine. The same for all the tests.

Jan Pustelnik Performance evaluation of various functional programming styles

Introduction General
Benchmarking
Code

Software — Scala

Scala build config for JMH by Konrad Malawski —
https://github.com/ktoso/sbt-jmh.
Scala 2.10.4, Java 1.7.0_71 and JMH 1.5.

Jan Pustelnik Performance evaluation of various functional programming styles

https://github.com/ktoso/sbt-jmh

Introduction General
Benchmarking
Code

Software — Haskell

Criterion library by Bryan O’Sullivan —
http://www.serpentine.com/criterion/tutorial.html
GHC 7.8.3, code was compiled with -0 option with the standard
backend.

Jan Pustelnik Performance evaluation of various functional programming styles

http://www.serpentine.com/criterion/tutorial.html

Introduction General
Benchmarking
Code

Software — C++

Wall clock time, MinGW 4.8.1, GCC version 4.6.3 with -03 option
and run on Windows (yes, it might make a difference).

Jan Pustelnik Performance evaluation of various functional programming styles

Introduction General
Benchmarking
Code

All fine, but give me the cOde!

Sure, please go to https://github.com/gosubpl for the Source.

Jan Pustelnik Performance evaluation of various functional programming styles

https://github.com/gosubpl

MergeSort
QuickSort
HeapSort
Correctness

Sorting

MergeSort

Mergesort is probably the oldest sorting algorithm for computers.
Attributed by Knuth to von Neumann around 1945.
Pros:

@ Is obviously correct

@ Has a nice functional implementation, in fact difficult to
implement with mutation

@ Works well with lists, tapes, other sequential data
structures/media

@ O(n x log(n)) asymptotic — best known for a sorting
algorithm that uses comparisons

Cons:

@ Maybe slower than quicksort, that will be discovered some
fifteen years later

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
Sorting gkSor

Correctness

Sources for examples

All programs used as examples are either Public Domain, MIT or
Creative Commons by attribution.

o Haskell - http://en.literateprograms.org/

@ C++ - look for inspiration at
http://rosettacode.org/wiki/Sorting_algorithms
@ Scala - Programming in Scala example improved by Daniel

Sobral -
http://stackoverflow.com/questions/2201472/
merge-sort-from-programming-scala-causes—-stack-overflo

Jan Pustelnik Performance evaluation of various functional programming styles

http://en.literateprograms.org/
http://rosettacode.org/wiki/Sorting_algorithms
http://stackoverflow.com/questions/2201472/merge-sort-from-programming-scala-causes-stack-overflow
http://stackoverflow.com/questions/2201472/merge-sort-from-programming-scala-causes-stack-overflow

MergeSort
ickSort

Sorting

Top-Down mergesort in Haskell

1| mergesort :: (a —> a —> Bool) —> [a] — [a]

2| mergesort pred [] =[]

3| mergesort pred [x] = [x]

4| mergesort pred xs = merge pred (mergesort pred xsl) (
mergesort pred xs2)

5 where

6 (xsl,xs2) = split xs

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
QuickSort
HeapSort
Correctness

Sorting

Top-Down mergesort in Haskell, cntd.

1/ split :: [a] = ([a],[a])

2| split xs = go xs xs where

3] go (x:xs) (-:-:zs) = (x:us,vs) where (us,vs)=go xs zs
4 go XS - = ([].xs)

5

6| merge :: (a —> a —> Bool) —> [a] — [a] — [a]
7| merge pred xs [] = xs

8| merge pred [] ys = ys

9| merge pred (x:xs) (y:ys)

10 | pred x y = x: merge pred xs (y:ys)

11 | otherwise = y: merge pred (x:xs) ys

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort

ickSort

Sorting

Bottom-Up mergesort in Haskell

1| mergesort pred [] =

2| mergesort pred xs = go [[x] | x <— xs]

3 where

4 go xs@(-:_-:_) = go (pairs xs)

5 go [xs] = Xxs

6 pairs (x:y:xs) = merge pred x y : pairs xs
7 pairs xs = xS

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
ickSort

Sorting

You can also do it in C++

It even has two built-in functions for merging: std: :merge and
std::inplace_merge

1| template<typename RandomAccesslterator, typename Order>

2| void mergesort(RandomAccesslterator first ,
RandomAccesslterator last, Order order)

314

4 if (last — first > 1)

5/ {

6 RandomAccesslterator middle = first + (last — first

) /2

7 mergesort (first , middle, order);

8 mergesort (middle, last, order);

9 std::inplace_merge(first , middle, last, order);

10 }

11}

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
QuickSort
HeapSort
Correctness

Sorting

You can also do it in C++ — contd.

[y

template<typename RandomAccesslterator>
void mergesort(RandomAccesslterator first ,
RandomAccesslterator last)

N

31{

N

mergesort (first , last, std::less<typename std::
iterator_traits <RandomAccesslterator>::value_type

>()):

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
QuickSort
HeapSort
Correctness

Sorting

And in Scala

1| def msort[T](less: (T, T) => Boolean) (xs: List[T]):
List[T] = {

2 def merge(xs: List[T], ys: List[T], acc: List[T]):

List [T] =

3 (xs, ys) match {

4 case (Nil, _) => ys.reverse ::: acc

5 case (-, Nil) => xs.reverse ::: acc

6 case (x :: xsl, y :: ysl) =

7 if (less(x, y)) merge(xsl, ys, x :: acc)

8 else merge(xs, ysl, y :: acc)

9 }

10 val n = xs.length / 2
11 if (n = 0) xs

12| else {

13 val (ys, zs) = xs splitAt n

14 merge (msort(less)(ys), msort(less)(zs), Nil).
reverse

15|}

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
. QuickSort
Sorting HeapSort
Correctness

And the performance crown goes to ...

All times in the table below are in milliseconds

Program / Input size | 20k | 200k | 500k 1m 2m
Haskell Bottom-Up 28 | 562.2 | 1948 | 4580 -

Haskell Top-Down 33.5 | 645.6 | 2225 | 5213 -
CH++ 6.9 - 173.4 | 355.6 | 748.8

Scala 9.5 - 411 | 1035.5 -

The table above gives us some point of reference — no thrills, really.

Jan Pustelnik Performance evaluation of various functional programming styles

ort
QuickSort
HeapSort
Correctness

Sorting

QuickSort

QuickSort is quick. Discovered by Hoare around 1960. Proven to
work around 1969. In the meantime Hoare was busy inventing
Hoare logic to use it to prove that quicksort is not only quick but
also sorts.

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

QuickSort — contd.

Pros:
o Is quick

@ Apart from imperative mutating implementation has a nice
functional one . ..

Cons:
@ Who knows what it does
@ Demands mutation!

@ Does not work well with lists, tapes, other sequential data
structures/media — requires random access data structure

e O(n x log(n)) asymptotic — but O(n?) pessimistic

@ ...but unfortunately that functional implementation is not
quick!

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

As previously, credits

@ Haskell Functional — http://en.literateprograms.org/
but almost identical programs can be found in [2] or [3]

o Haskell Imper-
ative —http://stackoverflow.com/questions/11481675/
using-vectors-for-performance-improvement-in-haskell

@ C++ — could not find this anywhere, had to code it, but it
was easy, doh!

@ Scala — Scala by Example by Martin Odersky, except for the
ST monadic example — this is from
https://github.com/fpinscala/fpinscala/blob/
master/exercises/src/main/scala/fpinscala/
localeffects/LocalEffects.scala (solutions to
Functional programming in Scala by Paul Chiusano and Rdnar
Bjarnason).

Jan Pustelnik Performance evaluation of various functional programming styles

http://en.literateprograms.org/
http://stackoverflow.com/questions/11481675/using-vectors-for-performance-improvement-in-haskell
http://stackoverflow.com/questions/11481675/using-vectors-for-performance-improvement-in-haskell
https://github.com/fpinscala/fpinscala/blob/master/exercises/src/main/scala/fpinscala/localeffects/LocalEffects.scala
https://github.com/fpinscala/fpinscala/blob/master/exercises/src/main/scala/fpinscala/localeffects/LocalEffects.scala
https://github.com/fpinscala/fpinscala/blob/master/exercises/src/main/scala/fpinscala/localeffects/LocalEffects.scala

Sorting

Standard mutable quicksort in Scala

Standard, ugly and i-am-not-quite-sure-it-is-working
implementation of the quicksort algorithm in a language that
supports direct mutation — Scala

1 def sortQuickTraditional(xs: Array[Int]): Array[Int]
=1

2 def swap(i: Int, j: Int) {
3 val t = xs(i)

4 xs(i) = xs(j)

5 xs(j) =t

6

}

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Standard mutable quicksort in Scala — contd.

1 def sortl(l: Int, r: Int) {

2 val pivot = xs((I + r) / 2)

3 var i = |

4 var j = r

5 while (i <= j) {

6 while (xs(i) < pivot) i 4+=1
7 while (xs(j) > pivot) j —=1
8 if (i <=j) {

9 swap(i, j)

10 i +=1

11 i =1

12 }

13 }

14 if (I <j) sortl(l, j)

15 if (j <r) sortl(i, r)

16 }

17 sortl (0, xs.length — 1)

18 XS

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting HeapSort

Correctness

Standard mutable quicksort in Haskell

One has to use the ST monad.

1/ stuquick :: [Int] — [Int]

2| stuquick [] =

3| stuquick xs = runST (do

4 let !len = length xs

5 arr <— newlListArray (0,len—1) xs
6 myqsort arr 0 (len—1)

7 let pick acc i

8 | i <O = return acc
9 | otherwise = do

10 v <— unsafeRead arr i
11 pick (v:acc) (i-1)
12 pick [] (len—1))

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Standard mutable quicksort in Haskell — contd.

1| mygsort :: STUArray s Int Int —> Int —> Int — ST s ()

2| myqgsort a lo hi

3 | lo < hi = do

4 let Iscan p h i

5 | i < h = do

6 v <— unsafeRead a i

7 if p< v then return i else Iscan p
h (i+1)

8 | otherwise = return i

9 rscan p | i

10 | I < i = do

11 v <— unsafeRead a i

12 if v < p then return i else rscan p
I (i—-1)

13 | otherwise = return i

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting HeapSort

Correctness

Standard mutable quicksort in Haskell — contd.

1 swap i j = do

2 v <— unsafeRead a i

3 unsafeRead a j >>= unsafeWrite a i

4 unsafeWrite a j v

5 sloop p | h

6 | I < h = do

7 I1 <— Iscan p h |

8 hl <— rscan p I1 h

9 if (11 < hl) then (swap I1 hl >>
sloop p I1 hl) else return |1

10 | otherwise = return |

11 piv <— unsafeRead a hi

12 i <— sloop piv lo hi

13 swap i hi

14 myqsort a lo (i—1)

15 mygqgsort a (i+1) hi

16 | otherwise = return ()

Jan Pustelnik Performance evaluation of various functional programming styles

1 def sortQuickMonadicST (xi: Array[Int]):
{

2 def invert(x: (Int, Int)): (Int, Int)

3 def identify(x: Int, y: Int): Int =y

4 val arrLen = xi.length

5 val xiz = xi.zipWithIndex

6 val xizi = (xiz map invert).tolist

7

8 type ForallST[A] = Forall [({type A[S]

Al
9 def noop[S] = ST[S, Unit](())

Array[Int] =

= (x.-2, x._1

ST[S., Al})#

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

ST monad mutable quicksort Scala — contd.

1 def swap[S](a: STArray[S, Int], i: Int, j: Int): ST]
S, Unit] = for

2 x <— a.read (i)

3 y <— a.read(}j)

4 - <— a.write(i, y)

5 o <— a.write(j, x)

6 } yield ()

Jan Pustelnik Performance evaluation of various functional programming styles

[y

s WwWN

0 ~N O

9
10
11
12
13
14
15
16

Jan Pustelnik Performance evaluation of various functional programming styles

def partition[S](a: STArray[S, Int], |: Int,
pivot: Int): ST[S, Int] = for {
vp <— a.read(pivot)
_ <— swap(a, pivot, r)
j <— newVar(l)
_ <= (I until r).foldLeft(noop[S]) ((s,
{
- <= s
vi <— a.read (i)
- <— if (vi < vp) (for {
vj <— j.read

- <— swap(a, i, vj)
o <— j.write(vj + 1)
} yield ())
else noop[S]
}oyield ())

X <— j.read
_ <— swap(a, x, r)

i) = for

Sorting

ST monad mutable quicksort Scala — contd.

1 def gs[S](a: STArray[S, Int], I: Int, r: Int): ST[S
. Unit] = if (I < r) for {

2 pi <— partition(a, |, r, I + (r = 1) / 2)

3 <= gs(a, |, pi — 1)

4 _<—gs(a, pi +1, r)

5 } yield ()

6 else noop[S]

7

8 def el[S] = for {

9 arr <— newArr[S, Int](arrLen, 0)

10 _ <— arr.fill(identify , xizi)

11 _ <— gs(arr, 0, arr.size — 1)

12 sorted <— arr.freeze

13 } yield sorted

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

ST monad mutable quicksort Scala — contd.

runST (new ForallST [ImmutableArray[Int]] {
def apply[S] = el][S]
}) . toArray

}

It might have not been the easiest to comprehend pieces of code,
but maybe it runs fast? Who knows . ..

AW N

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Pure functional quicksort in Haskell

Short, simple and easy to understand.

1| gsortl [] =[]

2| gsortl (p:xs) = gsortl lesser ++ [p] ++ gsortl greater
3 where

4 lesser =[]y | y<—xs, y<p]

5 greater = [y | y <— xs, y>=p]

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Pure functional quicksort in Scala

As easy as in Haskell :) You can also replace Array with
ArrayBuffer or Vector!

1| def sortFunctional(xs: Array[Int]): Array[Int] = {

2 if (xs.length <= 1) xs

3 else {

4 val pivot = xs(xs.length / 2)

5 Array.concat(sortFunctional(xs filter (pivot >)),
xs filter (pivot ==), sortFunctional(xs
filter (pivot <)))

6 }

7}

Wector is immutable and should behave like an Array plus have nice
amortised complexities.

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting HeapSort

Correctness

Pure functional quicksort in C++

Maybe even easier than in Haskell and maybe not. But maybe
faster?

1| vector<int> fungsort(vector<int> v) {

2 if (v.size() > 1) {

3 int pivot = v[0];

4 vector<int> lesser; vector<int> greater;

5 std :: copy_if(v.begin()+1, v.end(), std:: back_inserter
(lesser), std::bind2nd(std:: less<int >(), pivot));

7 std:: copy_if(v.begin()+1, v.end(), std:: back_inserter
(greater), std::notl(std::bind2nd(std::less<int

>(). pivot)));

9 vector<int> result;

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting HeapSort

Correctness

Pure functional quicksort in C++ — contd.

1 vector<int> fql = funqgsort(lesser);

2 vector<int> fqg = funqsort(greater);

3| std::copy(fql.begin(), fql.end(), std::back_inserter(
result));

4

5 result.push_back(pivot);

6

7 std :: copy(fqg.begin(), fqg.end(), std:: back_inserter(
result));

8

9 return result;

10, } else { return v; }

11

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
QuickSort
HeapSort
Correctness

Sorting

Ok, so tell me about the performance ...

All times in milliseconds

Program / Input size | 20k | 200k | 500k 1m 2m
MergeSort Scala 9.5 - 411 | 1035.5 -
Haskell Imperative 4.2 61.5 | 161.2 | 347.7 -
Haskell Functional 18.9 | 360.4 | 1072 | 2747 -
Haskell Fnct. saving 6.9 31.8 | 5154 | 1280 -
StdLibSort C++ 1.0 - 29.1 58.4 | 117.1
C++ Functional 445 - 1626 | 3751 | 8881
Scala Imperative 1.7 - 543 | 112.7 | 231.8
Scala Imp. Vector 17.1 - 816.5 | 1790 | 4648
Scala Functional 33.46 - 1058 | 2192 4726
Scala Funct. Vector 22.9 - 865.7 | 1981 | 4375
Scala ST Monad 138.3 - 5535 | 13428 | 35290

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

HeapSort

HeapSort is very easy to implement if you have a Heap or
PriorityQueue data structure at hand. Benchmarking it gives you a
chance to compare performance of various PriorityQueue
implementations.

Pros:

@ Very simple to implement if you have a PriorityQueue
@ O(n x log(n)) asymptotic
Cons:

o If your library supports PriorityQueues, probably it has a
standard sorting algorithm too

@ Slower than QuickSort and not stable like MergeSort

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Sources for examples

@ Haskell — Data.Heap from the heap package (leftist trees
from Okasaki by Edward Kmett) and Data.PQueue from the
pqueue package (binomial heaps).

@ Scala — one imperative implementation using
mutable.PriorityQueue from the standard library, and one
purely functional implementation using scalaz.Heap that
implements leftist trees (also by Edward Kmett)

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Heap sorts in Haskell

1| import qualified Data.Heap as DH — from heap package
2| import qualified Data.PQueue.Min as DPQMin — from
pqueue package

3
4|— heapsort
5
6

hsort :: [Int] — [Int]
hsort xs = DH.toAscList (DH.fromList xs :: DH.MinHeap
Int)
7
8|— another heapsort
9| hpgsort :: [Int] —> [Int]
10| hpgsort xs = DPQMin.toAscList (DPQMin.fromList xs)

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Mutable heap sort in Scala

1| // a bit mutable heapsort using the StdLib mutable.
PriorityQueue

2 def sortHeapPQ(xs: Array[Int]): Array[Int] = {

3 val ord = implicitly [Ordering[Int]]. reverse

4 val Ist = ListBuffer[Int]()

5 val pq: PriorityQueue[Int] = new PriorityQueue[lInt

10) (ord) ++ xs

6 while (pq.size > 0) {

7 val elem = pq.dequeue()

8 Ist 4= elem

of 3

10 Ist.toArray

1]}

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

Correctness

Pure immutable heap sort in Scala

1| def sortHeapleftist(xs: Array[Int]): Array[Int] = {

2 import scalaz._

3 import Scalaz.._

4 def poorMansHeapFold(h: Heap[Int]): List[Int] = {

5 def heapFoldLeftAccum (accum: List[Int], h: Heap]
Int]): List[Int] = {

6 if (h.size = 0) {

7 accum.reverse

8 } else {

9 val (head, tail) = h.uncons.get

10 heapFoldLeftAccum (head :: accum, tail)

11 }

12 }

13 heapFoldLeftAccum (Nil, h)

14 }

15 poorMansHeapFold (Heap.fromData(xs.tolList)).toArray

16| }

Jan Pustelnik Performance evaluation of various functional programming styles

MergeSort
QuickSort
HeapSort
Correctness

Sorting

But, | want the numbers!

All times in milliseconds

Program / Input size | 20k | 200k | 500k 1im 2m
MergeSort Scala 9.5 - 411 | 1035.5 -
Haskell QSort Funct. | 18.9 | 360.4 | 1072 2747 -
Scala QSort Imp. 1.7 - 543 112.7 | 231.8
Scala PriorityQueue 17.1 - 330.8 | 834.1 -
Scala ScalazHeap 135.5 - 6778 | 15363 -
Scala QuickST 138.3 - 5535 | 13428 | 35290
Haskell PQueue 24.8 | 506.4 | 1735 | 4108 -
Haskell Heap 40.3 | 740.3 | 2475 | 5606 -

Jan Pustelnik Performance evaluation of various functional programming styles

Sorting

QuickCheck

QuickSort is quick. Discovered by Hoare around 1960. Proven to
work around 1969. In the meantime Hoare was busy inventing
Hoare logic to use it to prove that quicksort is not only quick but
also sorts. ..

QuickCheck to the rescue!

1|— usage: quickCheckN 10000 prop_qsort_isOrdered

2

3| isOrdered (x1:x2:xs) = x1 <= x2 && isOrdered (x2:xs)
4| isOrdered _ = True

5

6| prop_gsort_isOrdered :: [Int] —> Bool

7| prop_gsort_isOrdered = isOrdered . qgsortl

8

9

quickCheckN n = quickCheckWith \$ stdArgs { maxSuccess
= n }

Jan Pustelnik Performance evaluation of various functional programming styles

Summary

@ Imperative constructs win in terms of performance

@ Haskell seems to be faster than Scala, C++ for pure
functional constructs

e Garbage is a problem in functional languages (in 1960's it was
called consing — but who uses Lisps anymore

@ Scalaz is a library, Haskell is a compiler

@ Pragmatic functional languages accept that mutation can be
a fact of life

@ One should isolate mutation, Monads not perfect — imperative
code even less readable

@ If it has functional interface, | can simply test it with
randomized tests, don't have to worry what's inside

Jan Pustelnik Performance evaluation of various functional programming styles

Summary

Bibliography

[
B
[
[
[

Okasaki C., Purely functional data structures, Cambridge
University Press, 1999

Rabhi F., Lapalme G., Algorithms, A Functional Programming
Approach, Addison-Wesley, 1999

Bird R., Introduction to Functional Programming using
Haskell, Prentice-Hall, 1998

Chusano P., Bjarnason R., Functional Programming in Scala,
Manning, 2014

Odersky, M., Spoon, L., Venners, B. Programming in Scala,
2nd ed., Artima, 2011

Jan Pustelnik Performance evaluation of various functional programming styles

	Introduction
	General
	Benchmarking
	Code

	Sorting
	MergeSort
	QuickSort
	HeapSort
	Correctness

	Summary

